Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Medical diagnostics: Identifying viruses on the spot

19.07.2012
A simple new method of extracting viral RNA from blood samples allows quick, on-the-spot identification of dengue fever in patients
Dengue fever is a disease passed to humans by mosquitoes. Millions of people every year are infected worldwide, and around 4,000–5,000 of these cases will suffer severe complications or death. Dengue fever most commonly affects young people between the ages of 15 and 24.

Currently, doctors identify dengue fever by clinical observations followed by a series of laboratory tests of blood and urine samples. These tests can take seven to ten days to complete, and require highly skilled staff and specialist equipment. Due to the complexity of the process, there is also a chance of cross-contamination during the procedure.

For these reasons, researchers are keen to develop quicker, more accurate ways of identifying viruses such as dengue fever. Siti Mohamed Rafei and co-workers at A*STAR’s Institute of Microelectronics, together with scientists from Veredus Laboratories in Singapore and the National University of Singapore, have designed and built a new self-contained microsystem that can ascertain the presence of dengue fever in blood samples within 30 minutes. Crucially, the new cartridge can be operated by non-skilled staff.

The microsystem works by extracting viral RNA from patients’ blood samples. Using a silicon-based viral extraction chip, and a cartridge containing reservoirs pre-filled with the different reagents required to extract viral RNA, the microsystem is fully self-contained.

In conventional virus detection systems, the chance of cross contamination is high because the extraction process requires extensive manual pipetting of reagents. In the newly designed system, the silicon chip is embedded in a polymeric cartridge that allows the user to preload all necessary reagents, making it fully self-contained and disposable. This added feature is extremely useful for testing infectious disease that might be highly virulent or contagious.

The cartridge is placed inside a handheld computer device with a touch screen. Pressing the start button operates a pre-determined series of plungers, which release the reagents into the silicon chip containing the blood sample. The reagents allow for the extraction of viral RNA and virus identification readout within 30 minutes.

The sequence of plungers and their speed are fully computer-controlled, thus the cartridge is configurable, user-friendly and does not require specialist knowledge to operate. In addition, the cartridge is adaptable to multiple biochemical protocols, not just to the viral RNA for dengue fever as described here. In future, the researchers hope to identify many infectious diseases with this technology.
The A*STAR-affiliated researchers contributing to this research are from the Institute of Microelectronics

References:
Zhang, L. et al. A self-contained disposable cartridge microsystem for dengue viral ribonucleic acid extraction. Sensors and Actuators B: Chemical 160, 1557–1564 (2011).

A*STAR Research | Research asia research news
Further information:
http://www.a-star.edu.sg
http://www.researchsea.com

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>