Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Medical College of Wisconsin researchers show molecule inhibits metastasis

11.10.2011
Researchers at the Medical College of Wisconsin have shown that a protein can inhibit metastasis of colon and melanoma cancers. The findings are published in the October 10, 2011 issue of Proceedings of the National Academy of Sciences.

Michael B. Dwinell, Ph.D., director of the Bobbie Nick Voss Laboratory and associate professor of microbiology and molecular genetics, is the lead author on the paper.

Chemokines and chemokine receptors are extensively involved in metastasis of 23 different forms of cancer. The chemokine referred to as CXCL12 is naturally expressed in the bone marrow, lungs and liver, all organs where cancer commonly metastasizes, but is often repressed in colon, breast and lung cancers.

In previous studies, researchers from the Dwinell laboratory had shown CXCL12 to reduce tumor growth and metastasis in colon and breast cancers. In those experiments, CXCL12 was engineered to produce the protein. However, for this study, researchers administered wild-type CXCL12 (naturally occurring CXCL12) or different oligomeric structures, either "monomer" (single) CXCL12 or a "dimer," a paired CXCL12 protein molecule and compared the results for both tumor growth and metastatic suppression.

CXCL12 proteins effectively blocked metastasis of the colon cancer and dramatically improved survival time, with the dimer showing effectiveness in blocking melanoma metastasis as well. Together with their prior results, the laboratory has shown that repression of native CXCL12 expression is a key signature in colon cancer whose impact on tumor malignancy can be reversed by administering the chemokine proteins. They also demonstrated that the single or paired proteins blocked metastasis while initiating unique biochemical signals through the receptor CXCR4.

"These data establish CXCL12 as a potential avenue for the next generation of biologic therapies that specifically target metastasis, which is key in cancer treatment and the improvement of survival rates" said Dr. Dwinell.

The work was supported by continuing charitable contributions from the Bobbie Nick Voss Charitable Foundation as Luke Drury, Ph.D., completed his doctoral studies. Collaborators on the paper include Brian Volkman, Ph.D.; Joshua J. Ziarek, Ph.D.; Christopher T. Veldkamp, Ph.D.; Samuel T. Hwang, M.D., Ph.D.; and Tomonori Takekoshi, Ph.D.; Medical College of Wisconsin; Nikolaus Heveker, Ph.D. and Stephanie Gravel, Ph.D.; University de Montreal, Quebec, Canada.

Maureen Mack | EurekAlert!
Further information:
http://www.mcw.edu

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>