Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Mechatronic design for a fail safe catheter guide in blood circulatory system

To prevent the risks in minimally invasive surgery procedures there has been considerable interest in using Master Slave System (MSS), a telesurgical system for catheter guide during interventional radiology. Here the researchers propose using a fail-safe telesurgical system.

Minimally invasive surgery (MIS) involves indirect observation of the surgical field through endoscope or similar devices and is carried out through the skin, through body cavities or anatomical openings.

Interventional Radiology (IVR), is one such MIS procedure and is performed using image guidance: tiny tubes (catheters) or needles are inserted through the body to the area of interest. The IVR procedures allow two types of treatment: treatment through the blood circulatory system and non-blood circulatory system, here we are looking at the development of a telesurgical system for catheter guide in the blood circulatory system.

To prevent the risks, there has been considerable interest in using Master Slave System (MSS), a telesurgical system for catheter guide during IVR. We propose using a fail-safe telesurgical system in interventional radiology. The Master Slave Mechanism has high precision performance and upon detection of any abnormality in position or command it will stop the procedure as a safety measure. The Master Slave System (MSS) for catheter guide in blood circulatory system consists of a master robot handle by surgeon, a slave robot placed near the patient and a close-loop control system. The elements involved are a surgeon, blood vessel of patient in contact with the catheter held by the slave robot, and a control system adjusting the parameters according to the influences from the environment. The MSS is indeed a mediator between the surgeon and the patient; therefore the system should be reliable ensure the safety of the patient.

As such, a fail-safe catheter guide system has to be developed. During the conceptual design phase, five key aspects for a fail-safe catheter guide system was specified. These aspects included the requirements, functions, environment, active structure and behavior of the system.The relevant spheres of influence were identified. Undesirable influences disturbing the operation of the system were marked as disturbance variables.This aspect describes the system elements, their attributes and the relationship between the elements of the system.

The aim is to define a system configuration for a safe and reliably guided catheter based on the function of MSS in IVR procedure and environmental factors. The IVR is a complicated procedure; therefore as the first step in the development of MSS for the catheter guide, the development of the MSS started from guiding the catheter in the vessel until it reaches the area of interest. The surgeons have to carry out some medical procedures before using the MSS which involves making a small incision in the patient’s body and inserting the catheter into the blood vessel and after that then the surgeon manipulates the master tool. The prototype development consists of a fail-safe catheter guide system. This section exemplifies the prototype development of an integral element of the catheter guide system, i.e. the slave system.

We have developed a slave system with two degrees of freedom (DOF) using two actuators as the positions control. A roller mechanism has been chosen to generate infinite thrust movement of the catheter. In order to prevent the intervention, both the DOF must be independent and the catheter grasp mechanism needs to be fixed with one DOF only. Most of the parts were made of aluminium except for the thrust mechanism case, which was made from ABS resin using stereo lithography. Last but not least, we aim to build a prototype of the Master Slave System that consists of a master tool, a slave system and a complete control system. Once the prototype is completed, an experiment using MATLAB Simulink or an in-vivo experiment would be conducted. In this report, the current state of the prototype development for a slave system for the catheter guide system has been explained.

For more information please contact:
Noor Ayuni Binti Che Zakaria
DR.-Ing Low Cheng Yee
Funding information
This research was supported by the Research Organization for Advanced Engineering in Shibaura Institute of Technology, Japan and later partially continued at the Faculty of Mechanical Engineering in Universiti Teknologi MARA, Malaysia.

Darmarajah Nadarajah | Research asia research news
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>