Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mechatronic design for a fail safe catheter guide in blood circulatory system

11.10.2012
To prevent the risks in minimally invasive surgery procedures there has been considerable interest in using Master Slave System (MSS), a telesurgical system for catheter guide during interventional radiology. Here the researchers propose using a fail-safe telesurgical system.

Minimally invasive surgery (MIS) involves indirect observation of the surgical field through endoscope or similar devices and is carried out through the skin, through body cavities or anatomical openings.

Interventional Radiology (IVR), is one such MIS procedure and is performed using image guidance: tiny tubes (catheters) or needles are inserted through the body to the area of interest. The IVR procedures allow two types of treatment: treatment through the blood circulatory system and non-blood circulatory system, here we are looking at the development of a telesurgical system for catheter guide in the blood circulatory system.

To prevent the risks, there has been considerable interest in using Master Slave System (MSS), a telesurgical system for catheter guide during IVR. We propose using a fail-safe telesurgical system in interventional radiology. The Master Slave Mechanism has high precision performance and upon detection of any abnormality in position or command it will stop the procedure as a safety measure. The Master Slave System (MSS) for catheter guide in blood circulatory system consists of a master robot handle by surgeon, a slave robot placed near the patient and a close-loop control system. The elements involved are a surgeon, blood vessel of patient in contact with the catheter held by the slave robot, and a control system adjusting the parameters according to the influences from the environment. The MSS is indeed a mediator between the surgeon and the patient; therefore the system should be reliable ensure the safety of the patient.

As such, a fail-safe catheter guide system has to be developed. During the conceptual design phase, five key aspects for a fail-safe catheter guide system was specified. These aspects included the requirements, functions, environment, active structure and behavior of the system.The relevant spheres of influence were identified. Undesirable influences disturbing the operation of the system were marked as disturbance variables.This aspect describes the system elements, their attributes and the relationship between the elements of the system.

The aim is to define a system configuration for a safe and reliably guided catheter based on the function of MSS in IVR procedure and environmental factors. The IVR is a complicated procedure; therefore as the first step in the development of MSS for the catheter guide, the development of the MSS started from guiding the catheter in the vessel until it reaches the area of interest. The surgeons have to carry out some medical procedures before using the MSS which involves making a small incision in the patient’s body and inserting the catheter into the blood vessel and after that then the surgeon manipulates the master tool. The prototype development consists of a fail-safe catheter guide system. This section exemplifies the prototype development of an integral element of the catheter guide system, i.e. the slave system.

We have developed a slave system with two degrees of freedom (DOF) using two actuators as the positions control. A roller mechanism has been chosen to generate infinite thrust movement of the catheter. In order to prevent the intervention, both the DOF must be independent and the catheter grasp mechanism needs to be fixed with one DOF only. Most of the parts were made of aluminium except for the thrust mechanism case, which was made from ABS resin using stereo lithography. Last but not least, we aim to build a prototype of the Master Slave System that consists of a master tool, a slave system and a complete control system. Once the prototype is completed, an experiment using MATLAB Simulink or an in-vivo experiment would be conducted. In this report, the current state of the prototype development for a slave system for the catheter guide system has been explained.

For more information please contact:
Noor Ayuni Binti Che Zakaria ayuni8098@salam.uitm.edu.my
DR.-Ing Low Cheng Yee chengyee.low@salam.uitm.edu.my
Funding information
This research was supported by the Research Organization for Advanced Engineering in Shibaura Institute of Technology, Japan and later partially continued at the Faculty of Mechanical Engineering in Universiti Teknologi MARA, Malaysia.

Darmarajah Nadarajah | Research asia research news
Further information:
http://www.uitm.edu.my/index.php/en
http://www.researchsea.com

More articles from Health and Medicine:

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

nachricht Flexible sensors can detect movement in GI tract
11.10.2017 | Massachusetts Institute of Technology

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

Im Focus: Small collisions make big impact on Mercury's thin atmosphere

Mercury, our smallest planetary neighbor, has very little to call an atmosphere, but it does have a strange weather pattern: morning micro-meteor showers.

Recent modeling along with previously published results from NASA's MESSENGER spacecraft -- short for Mercury Surface, Space Environment, Geochemistry and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

Conference Week RRR2017 on Renewable Resources from Wet and Rewetted Peatlands

28.09.2017 | Event News

 
Latest News

A single photon reveals quantum entanglement of 16 million atoms

16.10.2017 | Physics and Astronomy

The melting ice makes the sea around Greenland less saline

16.10.2017 | Earth Sciences

On the generation of solar spicules and Alfvenic waves

16.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>