Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Another mechanism discovered by which sulforaphane prevents cancer

29.02.2012
Researchers in the Linus Pauling Institute at Oregon State University have discovered yet another reason why the “sulforaphane”compound in broccoli and other cruciferous vegetables is so good for you – it provides not just one, but two ways to prevent cancer through the complex mechanism of epigenetics.
Epigenetics, an increasing focus of research around the world, refers not just to our genetic code, but also to the way that diet, toxins and other forces can change which genes get activated, or “expressed.” This can play a powerful role in everything from cancer to heart disease and other health issues.

Sulforaphane was identified years ago as one of the most critical compounds that provide much of the health benefits in cruciferous vegetables, and scientists also knew that a mechanism involved was histone deacetylases, or HDACs. This family of enzymes can interfere with the normal function of genes that suppress tumors.

HDAC inhibitors, such as sulforaphane, can help restore proper balance and prevent the development of cancer. This is one of the most promising areas of much cancer research. But the new OSU studies have found a second epigenetic mechanism, DNA methylation, which plays a similar role.

“It appears that DNA methylation and HDAC inhibition, both of which can be influenced by sulforaphane, work in concert with each other to maintain proper cell function,” said Emily Ho, an associate professor in the Linus Pauling Institute and the OSU College of Public Health and Human Sciences. “They sort of work as partners and talk to each other.”

This one-two punch, Ho said, is important to cell function and the control of cell division – which, when disrupted, is a hallmark of cancer.

“Cancer is very complex and it’s usually not just one thing that has gone wrong,” Ho said. “It’s increasingly clear that sulforaphane is a real multi-tasker. The more we find out about it, the more benefits it appears to have.”

DNA methylation, Ho said, is a normal process of turning off genes, and it helps control what DNA material gets read as part of genetic communication within cells. In cancer that process gets mixed up. And of considerable interest to researchers is that these same disrupted processes appear to play a role in other neurodegenerative diseases, including cardiovascular disease, immune function, neurodegenerative disease and even aging.

The influence of sulforaphane on DNA methylation was explored by examining methylation of the gene cyclinD2.

This research, which was published in the journal Clinical Epigenetics, primarily studied the effect on prostate cancer cells. But the same processes are probably relevant to many other cancers as well, researchers said, including colon and breast cancer.

“With these processes, the key is balance,” Ho said. “DNA methylation is a natural process, and when properly controlled is helpful. But when the balance gets mixed up it can cause havoc, and that’s where some of these critical nutrients are involved. They help restore the balance.”

Sulforaphane is particularly abundant in broccoli, but also found in other cruciferous vegetables such as cauliflower and kale. Both laboratory and clinical studies have shown that higher intake of cruciferous vegetables can aid in cancer prevention.

The research was supported by the National Institutes of Health and the OSU Environmental Health Sciences Center.

About the Linus Pauling Institute: The Linus Pauling Institute at OSU is a world leader in the study of micronutrients and their role in promoting optimum health or preventing and treating disease. Major areas of research include heart disease, cancer, aging and neurodegenerative disease.

Emily Ho | EurekAlert!
Further information:
http://www.oregonstate.edu

More articles from Health and Medicine:

nachricht Researchers show p300 protein may suppress leukemia in MDS patients
28.03.2017 | University of Miami Miller School of Medicine

nachricht When writing interferes with hearing
28.03.2017 | Université de Genève

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers create artificial materials atom-by-atom

28.03.2017 | Physics and Astronomy

Researchers show p300 protein may suppress leukemia in MDS patients

28.03.2017 | Health and Medicine

Asian dust providing key nutrients for California's giant sequoias

28.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>