Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mechanical pressure accelerates the early stages of colon cancer

17.10.2008
Genes are not the be all and end all of carcinogenesis. At the Institut Curie, the team of Emmanuel Farge, Inserm Director of Research (UMR 168 CNRS/Institut Curie), has just shown, in collaboration with the Sylvie Robine and her group (UMR144 CNRS/Institut Curie), that mechanical pressure can alter gene expression, and in particular activate the oncogenes(1) Myc and Twist, which are implicated in the early stages of colon cancer.

Although inactivation of the APC gene remains the genetic precondition for the development of this type of cancer, mechanical pressure on the colon speeds up carcinogenesis in animal models. And what if the increase if tumor mass were itself the cause of this pressure? This discovery reported in Human Science Frontier Journal opens up new horizons in research into the mechanical sensitivity of tumors.

Cancer stems from alteration in a cell’s genetic material. Yet a single event is not enough to transform a health cell into a cancer cell. Rather, cancer results from a succession of accidents. The APC (adenomatous polyposis coli) gene is mutated in 80% cases of colon cancer. This alteration is often described as the initiator of carcinogenesis. Although the loss of APC is necessary for development of a colon tumor, it is not sufficient. Other perturbations are needed.

At the Institut Curie, the Mechanics and Genetics of Embryo and Tumor Development team headed by Emmanuel Farge(2) is studying the effect of mechanical stress on gene expression during tumor and embryo development. Farge and colleagues recently demonstrated that morphogenetic movements, which occur in early development of Drosophila embryo, trigger expression of the Twist gene, which controls the differentiation of gastric tissues.(3) They have studied the changes induced by mechanical pressure on the expression of the protein ß-catenin and of two oncogenes controlled by it: Myc, which is involved in tumor growth, and Twist, which contributes to the invasiveness of tumors. The deregulation of ß-catenin is often described as being correlated with loss of the APC gene, in development of colon cancer.

What happens when pressure is applied to the colon of a mouse that has already “lost” a copy of the APC gene? Farge and colleagues observed a relocalization of ß-catenin from the cytoplasm towards the nucleus of the cells, followed by activation of the expression of the oncogenes Myc and Twist, which can then play their full part in carcinogenesis. In the absence of one copy of the APC gene, mechanical pressure of the order of magnitude equivalent to that exerted by intestinal transit would therefore stimulate tumor development.

Mechanical stress is therefore likely to affect the gene expression profile in colon cells already carrying an APC mutation. The events leading to formation of a cancer are not only, therefore, the prerogative of genetics: perturbations in the tumor environment can also participate. Mechanical sensitivity thus becomes a player in carcinogenesis.

So, while the mutation of the APC gene initiates tumor development, growth in tumor mass could accelerate development by compressing neighboring tissues.

Not all then is purely “genetic” or “cellular” in the development of the colon cancer and certain stages could result from mechanical effects. This discovery should prompt reassessment of preventive and therapeutic approaches, at least in colon cancer, and even in oncology in general.

(1) Genes associated with cancers
(2) Emmanuel Farge is Inserm Director of Research in UMR 168 CNRS/Institut Curie.

(3) Tissue deformation modulates Twist expression to determine anterior midgut differentiation in Drosophila embryos, N. Desprat, W. Supatto, PA. Pouille, E. Beaurepaire, E Farge, Developmental Cell, September 2008

celine giustranti | alfa
Further information:
http://hfspj.aip.org/
http://www.curie.fr

More articles from Health and Medicine:

nachricht Scientists re-create brain neurons to study obesity and personalize treatment
20.04.2018 | Cedars-Sinai Medical Center

nachricht Research offers clues for improved influenza vaccine design
09.04.2018 | NIH/National Institute of Allergy and Infectious Diseases

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Scientists re-create brain neurons to study obesity and personalize treatment

20.04.2018 | Health and Medicine

Spider silk key to new bone-fixing composite

20.04.2018 | Materials Sciences

Clear as mud: Desiccation cracks help reveal the shape of water on Mars

20.04.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>