Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mechanical forces driving breast cancer lead to key molecular discovery

28.03.2014

UCSF scientists say new finding could lead to more accurate prognosis

The stiffening of breast tissue in breast-cancer development points to a new way to distinguish a type of breast cancer with a poor prognosis from a related, but often less deadly type, UC San Francisco researchers have found in a new study.

The findings, published online March 16, 2014 in Nature Medicine, may lead eventually to new treatment focused not only on molecular targets within cancerous cells, but also on mechanical properties of surrounding tissue, the researchers said.

In a mouse model of breast cancer, scientists led by Valerie Weaver, PhD, professor of surgery and anatomy and director of the Center for Bioengineering and Tissue Regeneration at UCSF, identified a biochemical chain of events leading to tumor progression. Significantly, this chain of events was triggered by stiffening of scaffolding tissue in the microscopic environment surrounding pre-cancerous cells. The stiffening led to the production of a molecule that can be measured in human breast cancer tissue, and which the researchers found was associated with worse clinical outcomes.

... more about:
»Medicine »UCSF »biochemical »breast »subtypes »tumors

"This discovery of the molecular chain of events between tissue stiffening and spreading cancer may lead to new and more effective treatment strategies that target structural changes in breast cancers and other tumors," Weaver said.

In the mouse experiments, Janna Mouw, PhD, a UCSF associate specialist who works in Weaver's lab, found that tissue stiffening in microscopic scaffolding known as the extracellular matrix, or ECM, increases signaling by ECM-associated molecules, called integrins. The integrins in turn trigger a signaling cascade within cells that leads to the production of a tumor-promoting molecule called miR-18a.

Unlike most cellular signaling molecules thus far studied by scientists, miR-18a is not a protein or a hormone, but rather a microRNA, another type of molecule recognized in recent years to play an important role in the lives of cells. The miR-18a dials down the levels of a protective, tumor-suppressing protein called PTEN, which often is disabled in cancerous cells, leading to abnormal biochemical signaling that can promote cancer growth.

Stiffening of the tissue microenvironment in tumors

Weaver is a trained biochemist, and has been a trailblazer in the study of tissue mechanics and cancer for 15 years. Mouw is a mechanical engineer. The newly reported UCSF discovery highlights the importance of mechanical forces in the development of cancer, which usually is thought of in biochemical terms.

Armed with modern lab techniques, Weaver has made many discoveries about the mechanical and structural properties of tumor tissue and the stiffening that can occur. For example, she was the first to identify the cross-linking of structural elements within the ECM as a precursor to cancer progression.

Her research team's latest findings are of clinical interest because they may lead to earlier identification of certain difficult-to-treat breast cancers. About 60 percent of breast cancers can be easily identified as a type known as luminal breast cancer, but there are two subtypes of luminal breast cancer that are difficult to distinguish.

Luminal A breast cancer accounts for about 40 percent of all breast cancers, while luminal B breast cancer comprises about 20 percent. On average, women with luminal B breast cancer do not survive as long after treatment without breast cancer recurring, and they are less likely to respond to hormone therapies such as tamoxifen. Lack of a good diagnostic tool results in overtreatment of many luminal A breast cancers, Weaver said.

According to Shelley Hwang, MD, PhD, chief of breast surgery at Duke University Hospital, former UCSF faculty member and a clinical collaborator for the Nature Medicine study, "Current methods for distinguishing luminal A breast cancer from luminal B breast cancer are expensive and time consuming, and are rarely used in medical practice." If a link between miR18a and luminal B breast cancer can be definitively confirmed, and if a reliable clinical laboratory test can be developed to measure miR18a in the tumor tissue, it would provide a practical way to distinguish the two tumor subtypes, Hwang said.

Laura Van't Veer, head of the breast oncology program at the Helen Diller Family Comprehensive Cancer Center at UCSF, and the developer of MammaPrint, a 70-gene test used to predict breast cancer spread, said the Nature Medicine study represents a major finding.

"The work provides early evidence that miR18a is a strong predictor of metastasis and poor survival in women with luminal breast tumors, and that it may be used to distinguish luminal A breast tumors from luminal B breast tumors," Van't Veer said.

###

Additional co-authors of the study include Yoshihiro Yui, Laura Damiano, Russell Bainer, Johnathon Lakins, Irene Acerbi, Guanqing Ou, Amanda Wijekoon, and Yunn-Yi Chen from UCSF; Kandice Levental from the University of Texas, Houston; and Penney Gilbert from the University of Toronto. The study was funded by the US Department of Defense Breast Cancer Research Program, Susan G. Komen and the National Institutes of Health.

UCSF is a leading university dedicated to promoting health worldwide through advanced biomedical research, graduate-level education in the life sciences and health professions, and excellence in patient care. It includes top-ranked graduate schools of dentistry, medicine, nursing and pharmacy, a graduate division with nationally renowned programs in basic biomedical, translational and population sciences, as well as a preeminent biomedical research enterprise and two top-ranked hospitals, UCSF Medical Center and UCSF Benioff Children's Hospital.

Jeffrey Norris | EurekAlert!

Further reports about: Medicine UCSF biochemical breast subtypes tumors

More articles from Health and Medicine:

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht What does congenital Zika syndrome look like?
24.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>