Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mechanical forces driving breast cancer lead to key molecular discovery

28.03.2014

UCSF scientists say new finding could lead to more accurate prognosis

The stiffening of breast tissue in breast-cancer development points to a new way to distinguish a type of breast cancer with a poor prognosis from a related, but often less deadly type, UC San Francisco researchers have found in a new study.

The findings, published online March 16, 2014 in Nature Medicine, may lead eventually to new treatment focused not only on molecular targets within cancerous cells, but also on mechanical properties of surrounding tissue, the researchers said.

In a mouse model of breast cancer, scientists led by Valerie Weaver, PhD, professor of surgery and anatomy and director of the Center for Bioengineering and Tissue Regeneration at UCSF, identified a biochemical chain of events leading to tumor progression. Significantly, this chain of events was triggered by stiffening of scaffolding tissue in the microscopic environment surrounding pre-cancerous cells. The stiffening led to the production of a molecule that can be measured in human breast cancer tissue, and which the researchers found was associated with worse clinical outcomes.

... more about:
»Medicine »UCSF »biochemical »breast »subtypes »tumors

"This discovery of the molecular chain of events between tissue stiffening and spreading cancer may lead to new and more effective treatment strategies that target structural changes in breast cancers and other tumors," Weaver said.

In the mouse experiments, Janna Mouw, PhD, a UCSF associate specialist who works in Weaver's lab, found that tissue stiffening in microscopic scaffolding known as the extracellular matrix, or ECM, increases signaling by ECM-associated molecules, called integrins. The integrins in turn trigger a signaling cascade within cells that leads to the production of a tumor-promoting molecule called miR-18a.

Unlike most cellular signaling molecules thus far studied by scientists, miR-18a is not a protein or a hormone, but rather a microRNA, another type of molecule recognized in recent years to play an important role in the lives of cells. The miR-18a dials down the levels of a protective, tumor-suppressing protein called PTEN, which often is disabled in cancerous cells, leading to abnormal biochemical signaling that can promote cancer growth.

Stiffening of the tissue microenvironment in tumors

Weaver is a trained biochemist, and has been a trailblazer in the study of tissue mechanics and cancer for 15 years. Mouw is a mechanical engineer. The newly reported UCSF discovery highlights the importance of mechanical forces in the development of cancer, which usually is thought of in biochemical terms.

Armed with modern lab techniques, Weaver has made many discoveries about the mechanical and structural properties of tumor tissue and the stiffening that can occur. For example, she was the first to identify the cross-linking of structural elements within the ECM as a precursor to cancer progression.

Her research team's latest findings are of clinical interest because they may lead to earlier identification of certain difficult-to-treat breast cancers. About 60 percent of breast cancers can be easily identified as a type known as luminal breast cancer, but there are two subtypes of luminal breast cancer that are difficult to distinguish.

Luminal A breast cancer accounts for about 40 percent of all breast cancers, while luminal B breast cancer comprises about 20 percent. On average, women with luminal B breast cancer do not survive as long after treatment without breast cancer recurring, and they are less likely to respond to hormone therapies such as tamoxifen. Lack of a good diagnostic tool results in overtreatment of many luminal A breast cancers, Weaver said.

According to Shelley Hwang, MD, PhD, chief of breast surgery at Duke University Hospital, former UCSF faculty member and a clinical collaborator for the Nature Medicine study, "Current methods for distinguishing luminal A breast cancer from luminal B breast cancer are expensive and time consuming, and are rarely used in medical practice." If a link between miR18a and luminal B breast cancer can be definitively confirmed, and if a reliable clinical laboratory test can be developed to measure miR18a in the tumor tissue, it would provide a practical way to distinguish the two tumor subtypes, Hwang said.

Laura Van't Veer, head of the breast oncology program at the Helen Diller Family Comprehensive Cancer Center at UCSF, and the developer of MammaPrint, a 70-gene test used to predict breast cancer spread, said the Nature Medicine study represents a major finding.

"The work provides early evidence that miR18a is a strong predictor of metastasis and poor survival in women with luminal breast tumors, and that it may be used to distinguish luminal A breast tumors from luminal B breast tumors," Van't Veer said.

###

Additional co-authors of the study include Yoshihiro Yui, Laura Damiano, Russell Bainer, Johnathon Lakins, Irene Acerbi, Guanqing Ou, Amanda Wijekoon, and Yunn-Yi Chen from UCSF; Kandice Levental from the University of Texas, Houston; and Penney Gilbert from the University of Toronto. The study was funded by the US Department of Defense Breast Cancer Research Program, Susan G. Komen and the National Institutes of Health.

UCSF is a leading university dedicated to promoting health worldwide through advanced biomedical research, graduate-level education in the life sciences and health professions, and excellence in patient care. It includes top-ranked graduate schools of dentistry, medicine, nursing and pharmacy, a graduate division with nationally renowned programs in basic biomedical, translational and population sciences, as well as a preeminent biomedical research enterprise and two top-ranked hospitals, UCSF Medical Center and UCSF Benioff Children's Hospital.

Jeffrey Norris | EurekAlert!

Further reports about: Medicine UCSF biochemical breast subtypes tumors

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>