Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mechanical forces driving breast cancer lead to key molecular discovery

28.03.2014

UCSF scientists say new finding could lead to more accurate prognosis

The stiffening of breast tissue in breast-cancer development points to a new way to distinguish a type of breast cancer with a poor prognosis from a related, but often less deadly type, UC San Francisco researchers have found in a new study.

The findings, published online March 16, 2014 in Nature Medicine, may lead eventually to new treatment focused not only on molecular targets within cancerous cells, but also on mechanical properties of surrounding tissue, the researchers said.

In a mouse model of breast cancer, scientists led by Valerie Weaver, PhD, professor of surgery and anatomy and director of the Center for Bioengineering and Tissue Regeneration at UCSF, identified a biochemical chain of events leading to tumor progression. Significantly, this chain of events was triggered by stiffening of scaffolding tissue in the microscopic environment surrounding pre-cancerous cells. The stiffening led to the production of a molecule that can be measured in human breast cancer tissue, and which the researchers found was associated with worse clinical outcomes.

... more about:
»Medicine »UCSF »biochemical »breast »subtypes »tumors

"This discovery of the molecular chain of events between tissue stiffening and spreading cancer may lead to new and more effective treatment strategies that target structural changes in breast cancers and other tumors," Weaver said.

In the mouse experiments, Janna Mouw, PhD, a UCSF associate specialist who works in Weaver's lab, found that tissue stiffening in microscopic scaffolding known as the extracellular matrix, or ECM, increases signaling by ECM-associated molecules, called integrins. The integrins in turn trigger a signaling cascade within cells that leads to the production of a tumor-promoting molecule called miR-18a.

Unlike most cellular signaling molecules thus far studied by scientists, miR-18a is not a protein or a hormone, but rather a microRNA, another type of molecule recognized in recent years to play an important role in the lives of cells. The miR-18a dials down the levels of a protective, tumor-suppressing protein called PTEN, which often is disabled in cancerous cells, leading to abnormal biochemical signaling that can promote cancer growth.

Stiffening of the tissue microenvironment in tumors

Weaver is a trained biochemist, and has been a trailblazer in the study of tissue mechanics and cancer for 15 years. Mouw is a mechanical engineer. The newly reported UCSF discovery highlights the importance of mechanical forces in the development of cancer, which usually is thought of in biochemical terms.

Armed with modern lab techniques, Weaver has made many discoveries about the mechanical and structural properties of tumor tissue and the stiffening that can occur. For example, she was the first to identify the cross-linking of structural elements within the ECM as a precursor to cancer progression.

Her research team's latest findings are of clinical interest because they may lead to earlier identification of certain difficult-to-treat breast cancers. About 60 percent of breast cancers can be easily identified as a type known as luminal breast cancer, but there are two subtypes of luminal breast cancer that are difficult to distinguish.

Luminal A breast cancer accounts for about 40 percent of all breast cancers, while luminal B breast cancer comprises about 20 percent. On average, women with luminal B breast cancer do not survive as long after treatment without breast cancer recurring, and they are less likely to respond to hormone therapies such as tamoxifen. Lack of a good diagnostic tool results in overtreatment of many luminal A breast cancers, Weaver said.

According to Shelley Hwang, MD, PhD, chief of breast surgery at Duke University Hospital, former UCSF faculty member and a clinical collaborator for the Nature Medicine study, "Current methods for distinguishing luminal A breast cancer from luminal B breast cancer are expensive and time consuming, and are rarely used in medical practice." If a link between miR18a and luminal B breast cancer can be definitively confirmed, and if a reliable clinical laboratory test can be developed to measure miR18a in the tumor tissue, it would provide a practical way to distinguish the two tumor subtypes, Hwang said.

Laura Van't Veer, head of the breast oncology program at the Helen Diller Family Comprehensive Cancer Center at UCSF, and the developer of MammaPrint, a 70-gene test used to predict breast cancer spread, said the Nature Medicine study represents a major finding.

"The work provides early evidence that miR18a is a strong predictor of metastasis and poor survival in women with luminal breast tumors, and that it may be used to distinguish luminal A breast tumors from luminal B breast tumors," Van't Veer said.

###

Additional co-authors of the study include Yoshihiro Yui, Laura Damiano, Russell Bainer, Johnathon Lakins, Irene Acerbi, Guanqing Ou, Amanda Wijekoon, and Yunn-Yi Chen from UCSF; Kandice Levental from the University of Texas, Houston; and Penney Gilbert from the University of Toronto. The study was funded by the US Department of Defense Breast Cancer Research Program, Susan G. Komen and the National Institutes of Health.

UCSF is a leading university dedicated to promoting health worldwide through advanced biomedical research, graduate-level education in the life sciences and health professions, and excellence in patient care. It includes top-ranked graduate schools of dentistry, medicine, nursing and pharmacy, a graduate division with nationally renowned programs in basic biomedical, translational and population sciences, as well as a preeminent biomedical research enterprise and two top-ranked hospitals, UCSF Medical Center and UCSF Benioff Children's Hospital.

Jeffrey Norris | EurekAlert!

Further reports about: Medicine UCSF biochemical breast subtypes tumors

More articles from Health and Medicine:

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

nachricht Prospect for more effective treatment of nerve pain
20.02.2017 | Universität Zürich

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Positrons as a new tool for lithium ion battery research: Holes in the electrode

22.02.2017 | Power and Electrical Engineering

New insights into the information processing of motor neurons

22.02.2017 | Life Sciences

Healthy Hiking in Smart Socks

22.02.2017 | Innovative Products

VideoLinks
B2B-VideoLinks
More VideoLinks >>>