Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Meat, egg and dairy nutrient essential for brain development

25.11.2013
Deficiency of asparagine synthetase caused by rare genetic disorder affects brain development

Asparagine, found in foods such as meat, eggs, and dairy products, was until now considered non-essential because it is produced naturally by the body. Researchers at the University of Montreal and its affiliated CHU Sainte-Justine Hospital found that the amino acid is essential for normal brain development. This is not the case for other organs.


A genetic defect disrupts brain development by affecting the synthesis of asparagine, an amino acid until now thought to be non-essential. The discovery was made by researchers at CHU Sainte-Justine and the University of Montreal. This image shows MRI Images taken from a child who later died from the defect. Une anomalie génétique perturbe le développement du cerveau en altérant la synthèse de l'asparagine, un acide aminé jugé jusqu'à ce jour non essentiel. Cette découverte a été réalisée par des chercheurs du CHU Sainte-Justine et de l'Université de Montréal. Ces images IRM (MRI) illustrent le cerveau d'un enfant touché par l'anomalie qui décédera par la suite.

Credit: Universite de Montreal

"The cells of the body can do without it because they use asparagine provided through diet. Asparagine, however, is not well transported to the brain via the blood-brain barrier," said senior co-author of the study Dr. Jacques Michaud, who found that brain cells depend on the local synthesis of asparagine to function properly. First co-author José-Mario Capo-Chichi and colleague Grant Mitchell also made major contributions to the study.

In April 2009, a Quebec family experienced the worst tragedy for parents: before the age of one, one of their sons died of a rare genetic disease causing congenital microcephaly, intellectual disability, cerebral atrophy, and refractory seizures. The event was even more tragic because it was the third infant to die in this family from the same disease.

This tragedy led Dr. Michaud to discover the genetic abnormality responsible for this developmental disorder. "We are not at the verge of a miracle drug," Michaud said, "but we at least know where to look."

The team identified the gene affected by the mutation code for asparagine synthetase, the enzyme responsible for synthesizing the amino acid asparagine. The study is the first to associate a specific genetic variant with a deficiency of this enzyme. "In healthy subjects, it seems that the level of asparagine synthetase in the brain is sufficient to supply neurons," Michaud said. "In individuals with the disability, the enzyme is not produced in sufficient quantity, and the resulting asparagine depletion affects the proliferation and survival of cells during brain development."

Potential treatment

Children who are carriers of this mutation suffer, to varying degrees, from a variety of symptoms, including intellectual disability and cerebral atrophy, which can lead to death. The Quebec family lost three infant sons to this disorder. Two of their other children are alive and healthy.

Knowledge about gene mutations can be used to develop treatments. "Our results not only open the door to a better understanding of the disease," Michaud said, "but they also give us valuable information about the molecular mechanisms involved in brain development, which is important for the development of new treatments."

For example, asparagine supplement could be given to infants to ensure an adequate level of asparagine in the brain and the latter's normal development. "The amount of supplementation remains to be determined, as well as its effectiveness," said the geneticist. "Since these children are already born with neurological abnormalities, it is uncertain whether this supplementation would correct the neurological deficits."

Creating a pediatric clinical genomics centre

To date, nine children from four different families have been identified as carriers of the mutation: three infants from Quebec, three from a Bengali family living in Toronto, and three Israelis, whose symptoms are less severe.

Dr. Michaud's team discovered the genetic mutation by comparing the complete DNA of the Quebec family's children with symptoms of the disease. The researchers then identified children, among other families, who carried the single candidate gene. The gene was revealed only in the affected children, but not in the unaffected children of the families studied.

The discovery comes at a time when CHU Sainte-Justine Mother and Child University Hospital has reached an agreement with Génome Québec to create the first pediatric clinical genomic centre in Canada. "This initiative will transform the quality of care for younger patients to ensure better prevention from childhood," says Dr. Michaud. "More than 80% of genetic diseases occur in childhood or adolescence. "This new technology will allow us to sequence all the genes in the genome and obtain a genetic portrait of the children more quickly to know which disease they suffer from and to provide treatment, if available, or when it becomes available."

William Raillant-Clark | EurekAlert!
Further information:
http://www.umontreal.ca

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>