Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

McMaster researchers discover new mode of how diseases evolve

18.02.2009
A new way that bacteria evolve into something that can make you sick

Researchers of the Michael G. DeGroote Institute for Infectious Disease Research have discovered a new way that bacteria evolve into something that can make you sick.

The finding, published in the Feb. 16 issue of the Proceedings of the National Academy of Sciences, has implications for how scientists identify and assign risk to emerging diseases in the environment.

The researchers found that bacteria can develop into illness-causing pathogens by rewiring regulatory DNA, the genetic material that controls disease-causing genes in a body. Previously, disease evolution was thought to occur mainly through the addition or deletion of genes.

Brian Coombes, an assistant professor in the Department of Biochemistry and Biomedical Sciences, was the lead investigator of the study which involved researchers at McMaster University, the University of Melbourne, Australia and the University of Illinois at Chicago, USA.

"Bacterial cells contain about 5,000 different genes, but only a fraction of them are used at any given time," Coombes said. "The difference between being able to cause disease, or not cause disease, lies in where, when and what genes in this collection are turned on. We've discovered how bacteria evolve to turn on just the right combination of genes in order to cause disease in a host. It's similar to playing a musical instrument – you have to play the right keys in the right order to make music."

With infectious diseases on the rise, the McMaster finding has implications on how new pathogens are identified in the environment. Scientists currently monitor the risk of new diseases by assessing the gene content of bacteria found in water, food and animals.

"This opens up significant new challenges for us as we move forward with this idea of assigning risk to new pathogens," Coombes said. "Because now, we know it's not just gene content – it is gene content plus regulation of those genes."

Veronica McGuire | EurekAlert!
Further information:
http://www.mcmaster.ca

More articles from Health and Medicine:

nachricht Usher syndrome: Gene therapy restores hearing and balance
25.09.2017 | Institut Pasteur

nachricht MRI contrast agent locates and distinguishes aggressive from slow-growing breast cancer
25.09.2017 | Case Western Reserve University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>