Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

McLean Report on nanotechnology that may enhance medication delivery and improve MRI performance

02.05.2012
Researchers at Harvard-affiliated McLean Hospital have shown a new category of "green" nanoparticles comprised of a non-toxic, protein-based nanotechnology that can non-invasively cross the blood brain barrier and is capable of transporting various types of drugs.

In an article published May 1, 2012 online in PLoS ONE, Gordana Vitaliano, MD, director of the Brain Imaging NaNoTechnology Group at the McLean Hospital Imaging Center, reported that clathrin protein, a ubiquitous protein found in human, animal, plant, bacteria and fungi cells, can been modified for use as a nanoparticle for in-vivo studies.

"Clathrin has never been modified for use in vivo and offers many new and interesting possibilities for delivering drugs and medical imaging agents into the brain", said Vitaliano.

Clathrin is the body's primary delivery vehicle responsible for delivering many different types of molecules into cells. Vitaliano therefore believed that the protein's naturally potent transport capabilities might be put to practical medical use for drug delivery and medical imaging.

"This study provides a new insight into utilizing bioengineered clathrin protein as a novel nanoplatform that passes the blood brain barrier," said Vitaliano, who successfully attached different fluorescent labels, commonly used in imaging, to functionalize clathrin nanoparticles. "We were able to show that the clathrin nanoparticles could be non-invasively delivered to the central nervous system (CNS) in animals. The clathrin performed significantly."

Of major importance for future clinical applications, Vitaliano also showed that clathrin crossed and/or bypassed the blood-brain barrier without enhancers or modifications, unlike other nanoparticles. These findings open the door to exploring new and important CNS medical applications.

One important medical application for clathrin nanoparticles would be Magnetic Resonance Imaging (MRI). Gadolinium contrast agents are often used to improve MRI performance. In one configuration, Vitaliano found that functionalized clathrin nanoparticles performed 8,000 times better than an FDA approved MRI contrast agent (gadopentetate dimeglumine).

"Stated another way, it means 8,000 times less gadolinium might be required for achieving good MRI results. Because very low gadolinium concentrations would be required for MRI, it could significantly decrease gadolinium toxicity, which is an important issue," explained Vitaliano. "Clathrin transported gadolinium is therefore among the most potent, biocompatible contrast agents available."

These results in two different applications showed that clathrin offers substantial functionalization and transport flexibility. Purified clathrin nanoparticles could therefore serve as an appealing alternative to other medical nanoplatforms such as dendrimers, nanogels, solid lipid nanospheres, liposomes, and the like.

Given the critical need for new types of CNS drug transport capabilities, Vitaliano said her work would likely be of interest to researchers involved in neuroimaging and neuroscience, but also to radiologists, bioengineers, chemists, physicists, material scientists, biomedical researchers, and other researchers active at the frontiers of imaging and drug delivery.

Looking ahead, Vitaliano noted that her findings may also facilitate other studies for examining signaling pathways in different diseases that rely in whole or in part on clathrin transport, and thus may have a substantial impact in multiple fields.

McLean Hospital is the largest psychiatric clinical care, teaching and research facility of Harvard Medical School, an affiliate of Massachusetts General Hospital and a member of Partners HealthCare. For more information about McLean Hospital, visit www.mclean.harvard.edu.

Adriana Bobinchock | EurekAlert!
Further information:
http://www.mclean.harvard.edu

More articles from Health and Medicine:

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Better equipped in the fight against lung cancer
16.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>