Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mayo researchers find drug-resistant HIV patients with unimpaired immune cells

01.12.2010
Mayo Clinic researchers have shown why, in a minority of HIV patients, immune function improves despite a lack of response to standard anti-retroviral treatment. In these cases, researchers say, the virus has lost its ability to kill immune cells. The findings appear in the online journal PLoS Pathogens.

The goal of current treatments for HIV is to block the virus from reproducing, thereby allowing the immune system to repair itself. These findings show for the first time that not all HIV viruses are equally bad for the immune system.

Patients who harbor these viruses do not develop certain complications of the disease because of mutations that render some HIV drugs ineffective -- but also impair the ability of the virus to cause disease.

"These findings suggest -- in contrast to how these patients have been treated in the past -- that changing treatments might not be needed in order to help the immune system," says Andrew Badley, M.D., Mayo infectious disease researcher and senior author of the study.

Background

HIV causes disease by progressively killing CD4 T cells, whose function is to orchestrate the immune system. Loss of these cells renders patients susceptible to unusual infections and cancers. Over time, HIV mutates and can become resistant to the drugs used for treatment. Mayo researchers have discovered that viruses with certain mutations that render a component of the drug cocktail used to treat HIV infection ineffective also have an impaired ability to kill CD4 T cells. Even though mutated viruses replicate as well as normal HIV, they fail to cause the infected cells to die. Not all mutant viruses share this effect; only selected mutations cause the impairment in cell killing, without effecting virus replication.

HIV has evolved many ways to cause the death of CD4 T cells, most of which involve HIV accelerating the normal cell death. One kind of cell death that is unique to HIV involves the HIV enzyme protease, whose normal job is to cut up viral proteins so they can be used. This same process also cuts a normal cell protein which creates a novel protein called Casp8p41. This protein is only created during HIV infection. Casp8p41 in turn is responsible for the death of many of the infected cells. Researchers found that cells infected with HIV that also contain the mutations, produced less Casp8p41, and therefore fewer of the infected cells died.

Significance of the Findings

The current treatment for HIV involves measuring virus levels in the blood and using drugs to stop that virus from reproducing. When drugs stop working, virus levels in the blood rise and physicians typically respond by changing medications. However, effective drugs may not always be available.

"Results from the current study suggest that if a patient is failing their current treatment, and other effective drugs are not available, then it may be best to take advantage of the virus' lessened ability to kill CD4 T cells, by staying on the same medication" says Dr. Badley. "We have begun to study whether the best approach might be instead to monitor Casp8p41 levels as opposed to measuring virus levels, and use that to determine whether or not to change treatment."

Researchers have already developed a way to measure Casp8p41 in the blood of patients, and this new knowledge may ultimately lead to a new diagnostic tool for HIV treatment, based upon predicting whether a patient's virus will deplete CD4 T cells.

Other researchers on the team are first author Sekar Natesampillai, Ph.D.; Zilin Nie M.D.; Nathan Cummins, M.D.; and Gary Bren, of Mayo Clinic; and Dirk Jochmans, Ph.D., Tibotec BVBA, Belgium; and Jonathan Angel, M.D., Ottawa Hospital, Canada. The research was supported by the National Institutes of Health.

About Mayo Clinic

Mayo Clinic is a non-profit worldwide leader in medical care, research, and education for people from all walks of life. For more information, visit www.mayoclinic.org/about/ and www.mayoclinic.org/news

Robert Nellis | EurekAlert!
Further information:
http://www.mayo.edu

More articles from Health and Medicine:

nachricht Nanoparticles as a Solution against Antibiotic Resistance?
15.12.2017 | Friedrich-Schiller-Universität Jena

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>