Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mayo collaboration finds source of breast drug side effect

28.09.2010
Pharmacogenomic discovery allows for improved cancer therapy

Mayo Clinic researchers and their international colleagues have discovered genetic variants that lead to severe arthritis for a subset of women when taking aromatase inhibitors to treat their breast cancer. This serious side effect is so painful that many women halt their lifesaving medication. The findings appear today in the online issue of Journal of Clinical Oncology.

"Many women stop taking aromatase inhibitors due to the accompanying joint pain," says James Ingle, M.D., Mayo Clinic oncologist and senior author of the study. "We used the latest genetic technology in a very large group of women and discovered totally new clues to the cause of the main reason women stop this potentially lifesaving drug. Our findings open the door to finding ways to identify women who will develop these side effects and treat those who do, thus allowing more women to take this therapy and decrease their chances of breast cancer recurrence." Aromatase inhibitors are most often used as adjuvant therapy for postmenopausal women with early stage breast cancer.

How the Research Was Conducted

The researchers -- including investigators from the United States, Canada and Japan -- conducted a genome-wide association study to identify gene variants called single nucleotide polymorphisms (SNPs) that are associated with musculoskeletal pain. They selected patients who were enrolled in a prospective clinical trial, MA27, conducted by the NCIC Clinical Trials Group in Canada in collaboration with the NCI-sponsored North American Breast Cancer Groups comparing two aromatase inhibitor drugs. Two controls were matched with each patient and each patient who was selected experienced arthritis-like side effects within the first two years of treatment, or had already dropped out of the trial because of the pain. Researchers studied 293 separate cases, comparing them to 585 controls.

They found four likely SNPs on chromosome 14, all of which were nearest the gene T-Cell Leukemia 1A, which they discovered also was estrogen dependent. One of the SNPs also created an estrogen response with increased gene expression after exposure to estradiol, a widely used post-menopausal treatment. The results provide researchers with genetic markers for the aromatase inhibitor-induced arthritis and clues to find ways to treat it.

Support for the study came from the National Institutes of Health (NIH), the Canadian Cancer Society, the Biobank Japan Project funded by the Ministry of Education, Culture, Sports, Science and Technology, and the Breast Cancer Research Foundation. Other support was provided by the NIH Pharmacogenomics Research Network and the RIKEN Center for Genomic Medicine Global Alliance. The trial mentioned in the study was supported in part by Pfizer, Inc.

Other researchers include Daniel Schaid, Ph.D., Gregory Jenkins, Anthony Batzler, Mohan Liu, Ph.D., Liewei Wang, M.D., Ph.D., Matthew Goetz, M.D., and Richard Weinshilboum, M.D., all of Mayo Clinic; Paul Goss, M.B., BCh, Ph.D. Massachusetts General Hospital Cancer Center, Harvard University; Taisei Mushiroda, Ph.D., Michiaki Kubo, M.D., Ph.D., and Yusuke Nakamura, M.D., Ph.D., RIKEN Center for Genomic Medicine, Tokyo; Judy-Anne Chapman, Ph.D., Lois Shepherd, M.D., and Joseph Pater, M.D., NCIC Clinical Trials Group, Kingston, Ontario; Matthew Ellis, M.B., B.Chir., Ph.D., Washington University, St. Louis; Vered Stearns, M.D., John Hopkins School of Medicine, Baltimore; Daniel Rohrer, M.D., Ohio State University Medical Center, Columbus; Kathleen Pritchard, M.D., Sunnybrook Odette Regional Cancer Centre, University of Toronto; and David Flockhart, M.D., Ph.D., Indiana University, Indianapolis.

About Mayo Clinic

For more than 100 years, millions of people from all walks of life have found answers at Mayo Clinic. These patients tell us they leave Mayo Clinic with peace of mind knowing they received care from the world's leading experts. Mayo Clinic is the first and largest integrated, not-for-profit group practice in the world. At Mayo Clinic, a team of specialists is assembled to take the time to listen, understand and care for patients' health issues and concerns. These teams draw from more than 3,700 physicians and scientists and 50,100 allied staff that work at Mayo Clinic's campuses in Minnesota, Florida, and Arizona; and community-based providers in more than 70 locations in southern Minnesota, western Wisconsin and northeast Iowa. These locations treat more than half a million people each year. To best serve patients, Mayo Clinic works with many insurance companies, does not require a physician referral in most cases and is an in-network provider for millions of people. To obtain the latest news releases from Mayo Clinic, go to www.mayoclinic.org/news. For information about research and education, visit www.mayo.edu. MayoClinic.com (www.mayoclinic.com) is available as a resource for your general health information.

The NCIC Clinical Trials Group (NCIC CTG) is a cancer clinical trials cooperative group that conducts phase I-III trials testing anti-cancer and supportive therapies across Canada and internationally. It is one of the national programmes and networks of the Canadian Cancer Society Research Institute (CCSRI), and is supported by the CCSRI with funds raised by the Canadian Cancer Society (CCS). The NCIC CTG's Central Office is located at Queen's University in Kingston, Ontario, Canada.

Robert Nellis | EurekAlert!
Further information:
http://www.mayo.edu

More articles from Health and Medicine:

nachricht Observing the cell's protein factories during self-assembly
15.06.2018 | Charité - Universitätsmedizin Berlin

nachricht Scientists unravel molecular mechanisms of Parkinson's disease
13.06.2018 | The Francis Crick Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

A sprinkle of platinum nanoparticles onto graphene makes brain probes more sensitive

15.06.2018 | Materials Sciences

100 % Organic Farming in Bhutan – a Realistic Target?

15.06.2018 | Ecology, The Environment and Conservation

Perovskite-silicon solar cell research collaboration hits 25.2% efficiency

15.06.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>