Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Mayo collaboration finds source of breast drug side effect

Pharmacogenomic discovery allows for improved cancer therapy

Mayo Clinic researchers and their international colleagues have discovered genetic variants that lead to severe arthritis for a subset of women when taking aromatase inhibitors to treat their breast cancer. This serious side effect is so painful that many women halt their lifesaving medication. The findings appear today in the online issue of Journal of Clinical Oncology.

"Many women stop taking aromatase inhibitors due to the accompanying joint pain," says James Ingle, M.D., Mayo Clinic oncologist and senior author of the study. "We used the latest genetic technology in a very large group of women and discovered totally new clues to the cause of the main reason women stop this potentially lifesaving drug. Our findings open the door to finding ways to identify women who will develop these side effects and treat those who do, thus allowing more women to take this therapy and decrease their chances of breast cancer recurrence." Aromatase inhibitors are most often used as adjuvant therapy for postmenopausal women with early stage breast cancer.

How the Research Was Conducted

The researchers -- including investigators from the United States, Canada and Japan -- conducted a genome-wide association study to identify gene variants called single nucleotide polymorphisms (SNPs) that are associated with musculoskeletal pain. They selected patients who were enrolled in a prospective clinical trial, MA27, conducted by the NCIC Clinical Trials Group in Canada in collaboration with the NCI-sponsored North American Breast Cancer Groups comparing two aromatase inhibitor drugs. Two controls were matched with each patient and each patient who was selected experienced arthritis-like side effects within the first two years of treatment, or had already dropped out of the trial because of the pain. Researchers studied 293 separate cases, comparing them to 585 controls.

They found four likely SNPs on chromosome 14, all of which were nearest the gene T-Cell Leukemia 1A, which they discovered also was estrogen dependent. One of the SNPs also created an estrogen response with increased gene expression after exposure to estradiol, a widely used post-menopausal treatment. The results provide researchers with genetic markers for the aromatase inhibitor-induced arthritis and clues to find ways to treat it.

Support for the study came from the National Institutes of Health (NIH), the Canadian Cancer Society, the Biobank Japan Project funded by the Ministry of Education, Culture, Sports, Science and Technology, and the Breast Cancer Research Foundation. Other support was provided by the NIH Pharmacogenomics Research Network and the RIKEN Center for Genomic Medicine Global Alliance. The trial mentioned in the study was supported in part by Pfizer, Inc.

Other researchers include Daniel Schaid, Ph.D., Gregory Jenkins, Anthony Batzler, Mohan Liu, Ph.D., Liewei Wang, M.D., Ph.D., Matthew Goetz, M.D., and Richard Weinshilboum, M.D., all of Mayo Clinic; Paul Goss, M.B., BCh, Ph.D. Massachusetts General Hospital Cancer Center, Harvard University; Taisei Mushiroda, Ph.D., Michiaki Kubo, M.D., Ph.D., and Yusuke Nakamura, M.D., Ph.D., RIKEN Center for Genomic Medicine, Tokyo; Judy-Anne Chapman, Ph.D., Lois Shepherd, M.D., and Joseph Pater, M.D., NCIC Clinical Trials Group, Kingston, Ontario; Matthew Ellis, M.B., B.Chir., Ph.D., Washington University, St. Louis; Vered Stearns, M.D., John Hopkins School of Medicine, Baltimore; Daniel Rohrer, M.D., Ohio State University Medical Center, Columbus; Kathleen Pritchard, M.D., Sunnybrook Odette Regional Cancer Centre, University of Toronto; and David Flockhart, M.D., Ph.D., Indiana University, Indianapolis.

About Mayo Clinic

For more than 100 years, millions of people from all walks of life have found answers at Mayo Clinic. These patients tell us they leave Mayo Clinic with peace of mind knowing they received care from the world's leading experts. Mayo Clinic is the first and largest integrated, not-for-profit group practice in the world. At Mayo Clinic, a team of specialists is assembled to take the time to listen, understand and care for patients' health issues and concerns. These teams draw from more than 3,700 physicians and scientists and 50,100 allied staff that work at Mayo Clinic's campuses in Minnesota, Florida, and Arizona; and community-based providers in more than 70 locations in southern Minnesota, western Wisconsin and northeast Iowa. These locations treat more than half a million people each year. To best serve patients, Mayo Clinic works with many insurance companies, does not require a physician referral in most cases and is an in-network provider for millions of people. To obtain the latest news releases from Mayo Clinic, go to For information about research and education, visit ( is available as a resource for your general health information.

The NCIC Clinical Trials Group (NCIC CTG) is a cancer clinical trials cooperative group that conducts phase I-III trials testing anti-cancer and supportive therapies across Canada and internationally. It is one of the national programmes and networks of the Canadian Cancer Society Research Institute (CCSRI), and is supported by the CCSRI with funds raised by the Canadian Cancer Society (CCS). The NCIC CTG's Central Office is located at Queen's University in Kingston, Ontario, Canada.

Robert Nellis | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>