Mayo Clinic Researchers Identify New Enzyme To Fight Alzheimer's Disease

The enzyme — known as BACE2 — destroys beta-amyloid, a toxic protein fragment that litters the brains of patients who have the disease. The findings were published online Sept. 17 in the science journal Molecular Neurodegeneration.

Alzheimer's disease is the most common memory disorder. It affects more that 5.5 million people in the United States. Despite the disorder's enormous financial and personal toll, effective treatments have not yet been found.

The Mayo research team, led by Malcolm A. Leissring, Ph.D., a neuroscientist at Mayo Clinic in Florida, made the discovery by testing hundreds of enzymes for the ability to lower beta-amyloid levels. BACE2 was found to lower beta-amyloid more effectively than all other enzymes tested. The discovery is interesting because BACE2 is closely related to another enzyme, known as BACE1, involved in producing beta-amyloid.

“Despite their close similarity, the two enzymes have completely opposite effects on beta-amyloid — BACE1 giveth, while BACE2 taketh away,” Dr. Leissring says.

Beta-amyloid is a fragment of a larger protein, known as APP, and is produced by enzymes that cut APP at two places. BACE1 is the enzyme responsible for making the first cut that generates beta-amyloid. The research showed that BACE2 cuts beta-amyloid into smaller pieces, thereby destroying it, instead. Although other enzymes are known to break down beta-amyloid, BACE2 is particularly efficient at this function, the study found.

Previous work had shown that BACE2 can also lower beta-amyloid levels by a second mechanism: by cutting APP at a different spot from BACE1. BACE2 cuts in the middle of the beta-amyloid portion, which prevents beta-amyloid production.

“The fact that BACE2 can lower beta-amyloid by two distinct mechanisms makes this enzyme an especially attractive candidate for gene therapy to treat Alzheimer's disease,” says first author Samer Abdul-Hay, Ph.D., a neuroscientist at Mayo Clinic in Florida.

The discovery suggests that impairments in BACE2 might increase the risk of Alzheimer's disease. This is important because certain drugs in clinical use — for example, antiviral drugs used to treat human immunodeficiency virus (HIV) — work by inhibiting enzymes similar to BACE2.

Although BACE2 can lower beta-amyloid by two distinct mechanisms, only the newly discovered mechanism — beta-amyloid destruction — is likely relevant to the disease, the researchers note. This is because the second mechanism, which involves BACE2 cutting APP, does not occur in the brain. The researchers have obtained a grant from the National Institutes of Health to study whether blocking beta-amyloid destruction by BACE2 can increase the risk for Alzheimer's disease in a mouse model of the disease.

The research was supported by a grant from the Coins for Alzheimer's Research Trust Fund in affiliation with the American Federation for Aging Research.

About Mayo Clinic
Mayo Clinic is a nonprofit worldwide leader in medical care, research and education for people from all walks of life. For more information, visit MayoClinic.com or MayoClinic.org/news.

Media Contact

Kevin Punsky EurekAlert!

More Information:

http://www.mayo.edu

All latest news from the category: Health and Medicine

This subject area encompasses research and studies in the field of human medicine.

Among the wide-ranging list of topics covered here are anesthesiology, anatomy, surgery, human genetics, hygiene and environmental medicine, internal medicine, neurology, pharmacology, physiology, urology and dental medicine.

Back to home

Comments (0)

Write a comment

Newest articles

New yttrium-hydrogen compounds discovered

Researchers at the University of Bayreuth have made a significant scientific breakthrough by discovering new yttrium-hydrogen compounds having serious implications for the research on high-pressure superconductivity. High-pressure superconductivity refers to…

New AI model detects ninety percent of lymphatic cancer cases

Medical image analysis using AI has developed rapidly in recent years. Now, one of the largest studies to date has been carried out using AI-assisted image analysis of lymphoma, cancer…

UTA preps giant particle detectors for neutrino project

Excavation of caverns part of Fermilab’s Deep Underground Neutrino Experiment. With excavation work complete at the site where four gigantic particle detectors for the international Deep Underground Neutrino Experiment (DUNE) will be…

Partners & Sponsors