Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mayo Clinic physicians estimate new, tiny, super-sensitive probe could cut colon polyp removal in half

09.10.2008
Based on results of a landmark study, researchers at Mayo Clinic's Florida campus see a future in which virtual biopsies will eliminate the need to remove colon polyps that are not cancerous or will not morph into the disease.

Currently one-third to one-half of the polyps removed during colonoscopies end up being harmless, but they need to be examined by pathologists, and this increases time, expense and the potential for complications to the beneficial screening.

At the annual meeting of the American College of Gastroenterology, Mayo Clinic gastroenterologists will present final details of a study testing a probe so sensitive that it can tell if a cell in the colon is becoming cancerous or not.

They specifically found that the system, known as probe-based confocal laser endomicroscopy (pCLE), was 90 percent accurate in identifying benign or harmless polyps in patients. With further tweaking, the researchers believe pCLE can reach about 100 percent accuracy.

"Our goal is to remove only cancerous or precancerous polyps from patients during a colonoscopy, and I think we are close to that," says the study's lead investigator, Michael Wallace, M.D., M.P.H., professor of medicine at Mayo Clinic.

Mayo Clinic has been the U.S. leader in testing pCLE, among other endoscopic imaging technologies, and is one of three international institutions to have tested it in colon polyps. The system has been used under a research protocol for several years at Mayo. Now, physicians are starting to use it more broadly, especially to re-examine the colon in patients who previously had large, precancerous polyps removed and in pre-cancerous conditions elsewhere in the GI tract, such as Barrett's esophagus, Dr. Wallace says.

In this study, the researchers tested two different new imaging systems against the gold standard, which is examination of a removed polyp by a pathologist. "Using the expertise of a pathologist has been a great way to determine if a polyp is dangerous, but because half of these growths are not dangerous, we are seeking an equally effective and more efficient way to determine who is at risk of colon cancer," says the study's lead research fellow, Anna M. Buchner, M.D., who will present the results.

The pCLE system is a fiber-optic probe 2 millimeters in diameter that can be passed through a normal endoscope and can see structures as small as 1 micron, such as single cells or the nucleus within a cell. "This is essentially a miniaturized microscope that can be placed inside the body, so the tissue doesn't need to be removed and placed under a traditional microscope," Dr. Wallace says.

The pCLE system, which was developed by Mauna Kea Technologies (Paris, France), was tested against the Fujinon color enhancement system (FICE), which uses optical filters to look at a larger area of tissue. "This is like looking at the forest using FICE or the trees with pLCE," Dr. Wallace says.

A total of 57 polyps from 38 patients were examined. The FICE technique correctly diagnosed 41 of 57 polyps as benign, whereas pLCE picked up 51 of the benign lesions.

The researchers believe that the best use of these advanced technologies is to use FICE to provide a first look at suspicious areas of a colon during a colonoscopy and then to use pCLE to zero in on polyps in question.

"These new probes will change how colonoscopies and other procedures using endoscopes will be done in the future," says Dr. Buchner. "We will be able to perform real-time virtual biopsies, which will be more efficient in every way." One major advantage is that the pCLE system allows doctors to make a specific diagnosis at the time of the procedure and thus go directly to treatment instead of waiting two to three days for biopsy results to return. This should allow patients to avoid repeat procedures, Dr. Wallace says.

The study was supported by the American College of Gastroenterology and by manufacturers of the two devices. The study investigators have no consulting relationships with, or material interest in, these companies.

Kevin Punsky | EurekAlert!
Further information:
http://www.mayo.edu

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>