Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Mayo Clinic and IBM Advance Early Detection of Brain Aneurysms

Preventing deadly ruptures of the blood vessels in the brain is the aim of a new Mayo Clinic project to help radiologists detect aneurysms with far greater speed and accuracy.

The new method uses analytics technology developed by the Mayo and IBM collaboration, Medical Imaging Informatics Innovation Center and has proven a 95 percent accuracy rate in detecting aneurysms, compared with 70 percent for manual interpretation. Project findings were reported in the Journal of Digital Imaging (published online Nov. 24, 2009).

Already saving patients’ lives, the project has examined more than 15 million images from thousands of patients since the project began in early July. It uses technology that combines advanced imaging with analytics to highlight likely aneurysms for faster detection. This helps radiologists identify them before they result in brain hemorrhage or neurological damage. In the future, Mayo Clinic expects to use the same approach for other radiology detection tests such as the diagnosis of cancer or vessel anomalies in other parts of the body.

“This fully automatic scheme is significant in helping radiologists detect aneurysms in magnetic resonance angiography exams,” says Mayo radiologist Bradley Erickson, M.D., senior author of the study and co-director of the Medical Imaging Informatics Innovation Center at Mayo Clinic.

One out of 50 people in the United States has an unruptured brain aneurysm -- an abnormal outward bulging in the blood vessels in the brain -- and about 40 percent of all people who have a ruptured brain aneurysm will die as a result.

Traditionally, a patient suspected of having a brain aneurysm due to a stroke, traumatic injury or family history would undergo an invasive test using a catheter that injects dye into the body, a technique with risks of neurologic complications. To improve the process of detection using noninvasive magnetic resonance angiography imaging technology, Mayo Clinic and IBM worked to create so-called “automatic reads” that run detection algorithms immediately following a scan.

Once images are acquired, they are automatically routed to servers in the Mayo and IBM Medical Imaging Informatics Innovation Center located on the Mayo campus in Rochester, a collaborative research facility that combines advanced computing and image processing to provide faster, more accurate image analysis. There algorithms align and analyze images to locate and mark potential aneurysms -- even very small ones less than 5mm -- so specially trained radiologists can conduct a further and final analysis.

From the time an image is taken to the time it is ready to be read by a radiologist, there often is only a 10-minute window. In that 10 minutes, the new workflow is able to identify images coming off of the scanners and route those related to the head and brain through the special workflow which then conducts automated aneurysm detection. On average, this can be done in three to five minutes, improving efficiency and saving valuable radiologist’s time, leading to a quicker diagnosis which is especially important in the case of a serious aneurysm.

“Our joint work with Mayo Clinic on this project taps IBM’s deep expertise in high performance computing and applies it to health analytics, enabling us to remove some of the time and efficiency barriers and making imaging an even more valuable preventative screening tool. Enabling broad access to this capability via cloud delivery is the natural next step,” said Bill Rapp, IBM's CTO of Healthcare and Life Sciences and co-director of the Medical Imaging Informatics Innovation Center.

The aneurysm detection system uses an algorithm developed by Mayo researchers that is executed on IBM WebSphere Process Server to model and orchestrate the automated workflow. Images are stored on IBM DB2 for Linux and Windows data service and workflow logic is run on IBM System x servers and IBM storage.

About IBM
For more information about IBM, visit:
About Mayo Clinic
For more than 100 years, millions of people from all walks of life have found answers at Mayo Clinic. These patients tell us they leave Mayo Clinic with peace of mind knowing they received care from the world's leading experts. Mayo Clinic is the first and largest integrated, not-for-profit group practice in the world. At Mayo Clinic, a team of specialists is assembled to take the time to listen, understand and care for patients' health issues and concerns. These teams draw from more than 3,700 physicians and scientists and 50,100 allied staff that work at Mayo Clinic’s campuses in Minnesota, Florida, and Arizona; and community-based providers in more than 70 locations in southern Minnesota, western Wisconsin and northeast Iowa. These locations treat more than half a million people each year. To best serve patients, Mayo Clinic works with many insurance companies, does not require a physician referral in most cases and is an in-network provider for millions of people. To obtain the latest news releases from Mayo Clinic, go to For information about research and education visit ( is available as a resource for your general health information.

Robert Nellis | Newswise Science News
Further information:

More articles from Health and Medicine:

nachricht Inflammation Triggers Unsustainable Immune Response to Chronic Viral Infection
24.10.2016 | Universität Basel

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>