Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mayo Clinic and IBM Advance Early Detection of Brain Aneurysms

27.01.2010
Preventing deadly ruptures of the blood vessels in the brain is the aim of a new Mayo Clinic project to help radiologists detect aneurysms with far greater speed and accuracy.

The new method uses analytics technology developed by the Mayo and IBM collaboration, Medical Imaging Informatics Innovation Center and has proven a 95 percent accuracy rate in detecting aneurysms, compared with 70 percent for manual interpretation. Project findings were reported in the Journal of Digital Imaging (published online Nov. 24, 2009).

Already saving patients’ lives, the project has examined more than 15 million images from thousands of patients since the project began in early July. It uses technology that combines advanced imaging with analytics to highlight likely aneurysms for faster detection. This helps radiologists identify them before they result in brain hemorrhage or neurological damage. In the future, Mayo Clinic expects to use the same approach for other radiology detection tests such as the diagnosis of cancer or vessel anomalies in other parts of the body.

“This fully automatic scheme is significant in helping radiologists detect aneurysms in magnetic resonance angiography exams,” says Mayo radiologist Bradley Erickson, M.D., senior author of the study and co-director of the Medical Imaging Informatics Innovation Center at Mayo Clinic.

One out of 50 people in the United States has an unruptured brain aneurysm -- an abnormal outward bulging in the blood vessels in the brain -- and about 40 percent of all people who have a ruptured brain aneurysm will die as a result.

Traditionally, a patient suspected of having a brain aneurysm due to a stroke, traumatic injury or family history would undergo an invasive test using a catheter that injects dye into the body, a technique with risks of neurologic complications. To improve the process of detection using noninvasive magnetic resonance angiography imaging technology, Mayo Clinic and IBM worked to create so-called “automatic reads” that run detection algorithms immediately following a scan.

Once images are acquired, they are automatically routed to servers in the Mayo and IBM Medical Imaging Informatics Innovation Center located on the Mayo campus in Rochester, a collaborative research facility that combines advanced computing and image processing to provide faster, more accurate image analysis. There algorithms align and analyze images to locate and mark potential aneurysms -- even very small ones less than 5mm -- so specially trained radiologists can conduct a further and final analysis.

From the time an image is taken to the time it is ready to be read by a radiologist, there often is only a 10-minute window. In that 10 minutes, the new workflow is able to identify images coming off of the scanners and route those related to the head and brain through the special workflow which then conducts automated aneurysm detection. On average, this can be done in three to five minutes, improving efficiency and saving valuable radiologist’s time, leading to a quicker diagnosis which is especially important in the case of a serious aneurysm.

“Our joint work with Mayo Clinic on this project taps IBM’s deep expertise in high performance computing and applies it to health analytics, enabling us to remove some of the time and efficiency barriers and making imaging an even more valuable preventative screening tool. Enabling broad access to this capability via cloud delivery is the natural next step,” said Bill Rapp, IBM's CTO of Healthcare and Life Sciences and co-director of the Medical Imaging Informatics Innovation Center.

The aneurysm detection system uses an algorithm developed by Mayo researchers that is executed on IBM WebSphere Process Server to model and orchestrate the automated workflow. Images are stored on IBM DB2 for Linux and Windows data service and workflow logic is run on IBM System x servers and IBM storage.

About IBM
For more information about IBM, visit: http://www.ibm.com/think
About Mayo Clinic
For more than 100 years, millions of people from all walks of life have found answers at Mayo Clinic. These patients tell us they leave Mayo Clinic with peace of mind knowing they received care from the world's leading experts. Mayo Clinic is the first and largest integrated, not-for-profit group practice in the world. At Mayo Clinic, a team of specialists is assembled to take the time to listen, understand and care for patients' health issues and concerns. These teams draw from more than 3,700 physicians and scientists and 50,100 allied staff that work at Mayo Clinic’s campuses in Minnesota, Florida, and Arizona; and community-based providers in more than 70 locations in southern Minnesota, western Wisconsin and northeast Iowa. These locations treat more than half a million people each year. To best serve patients, Mayo Clinic works with many insurance companies, does not require a physician referral in most cases and is an in-network provider for millions of people. To obtain the latest news releases from Mayo Clinic, go to www.mayoclinic.org/news. For information about research and education visit www.mayo.edu. MayoClinic.com (www.mayoclinic.com) is available as a resource for your general health information.

Robert Nellis | Newswise Science News
Further information:
http://www.mayo.edu
http://www.ibm.com/think

More articles from Health and Medicine:

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>