Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mayo Clinic creates tool to track real-time chemical changes in brain

16.07.2012
Novel system will help treat diseases like Parkinson's, Tourette's and depression

Mayo Clinic researchers have found a novel way to monitor real-time chemical changes in the brains of patients undergoing deep brain stimulation (DBS). The groundbreaking insight will help physicians more effectively use DBS to treat brain disorders such as Parkinson's disease, depression and Tourette syndrome. The findings are published in the journal Mayo Clinic Proceedings.

Journalists: For multimedia resources including video of a tremor patient undergoing DBS, visit the Mayo Clinic News Network.

Researchers hope to use the discovery to create a DBS system that can instantly respond to chemical changes in the brain. Parkinson's, Tourette syndrome and depression all involve a surplus or deficiency of neurochemicals in the brain. The idea is to monitor those neurochemicals and adjust them to appropriate levels.

"We can learn what neurochemicals can be released by DBS, neurochemical stimulation, or other stimulation. We can basically learn how the brain works," says author Su-Youne Chang, Ph.D., of the Mayo Clinic Neurosurgery Department. As researchers better understand how the brain works, they can predict changes, and respond before those changes disrupt brain functioning.

Researchers observed the real-time changes of the neurotransmitter adenosine in the brains of tremor patients undergoing deep brain stimulation. Neurotransmitters such as dopamine and serotonin are chemicals that transmit signals from a neuron to a target cell across a synapse.

The team used fast scan cyclic voltammetry (FSCV) to quantify concentrations of adenosine released in patients during deep brain stimulation. The data was recorded using Wireless Instantaneous Neurotransmitter Concentration Sensing, a small wireless neurochemical sensor implanted in the patient's brain. The sensor, combined with FSCV, scans for the neurotransmitter and translates that information onto a laptop in the operating room. The sensor has previously identified neurotransmitters serotonin and dopamine in tests in brain tissue. This was the first time researchers used this technique in patients.

Tremors are a visual cue that the technique is working; researchers suspect adenosine plays a role in reducing tremors.

Researchers also hope to learn more about conditions without such external manifestations.

"We can't watch pain as we do tremors," says Kendall Lee, M.D., Ph.D., a Mayo Clinic neurosurgeon. "What is exciting about this electrochemical feedback is that we can monitor the brain without external feedback. So now, we can monitor neurochemicals in the brain and learn about brain processes like pain."

DBS has been used successfully worldwide to treat patients with tremors. However, physicians do not fully understand why DBS works in patients. They know that when DBS electrodes are inserted before electrical stimulation, there is an immediate tremor reduction. Known as the microthalamotomy effect, it is reported in up to 53 percent of patients and known to last as long as a year.

Researchers hope to use the study findings to create a self-contained "smart" DBS system.

"With the stimulator and detection, we can create algorithms and then raise neurotransmitters to a specified level," says Kevin Bennet, a Mayo Clinic engineer who helped create the system. "We can raise these chemicals to appropriate levels, rising and falling with each person throughout their life. Within milliseconds, we can measure, calculate and respond. From the patient's perspective, this would be essentially instantaneous."

The work was supported in part by the National Institutes of Health and the Grainger Foundation.

Co-authors include Inyong Kim; Michael Marsh; Dong Pyo Jang, Ph.D.; Sun-Chul Hwang, M.D., Ph.D.; Jamie Van Gompel, M.D.; Stephan Goerss; Christopher Kimble, M.S.; Paul Garris, Ph.D.; and Charles Blaha

About Mayo Clinic

Mayo Clinic is a nonprofit worldwide leader in medical care, research and education for people from all walks of life. For more information, visit www.mayoclinic.com and www.mayoclinic.org/news.

Brian Kilen | EurekAlert!
Further information:
http://www.mayo.edu

More articles from Health and Medicine:

nachricht Serious children’s infections also spreading in Switzerland
26.07.2017 | Universitätsspital Bern

nachricht New vaccine production could improve flu shot accuracy
25.07.2017 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>