Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Mayo Clinic Breast Cancer Study Finds New Type of Mutation

Discovery could lead to development of new drugs

Mayo Clinic researchers have discovered a new class of molecular mutation in various forms of breast cancer, a finding that may shed new light on development and growth of different types of breast tumors. Called fusion transcripts, the mutated forms of RNA may also provide a way to identify tumor subtypes and offer new strategies to treat them, investigators say.

Their study, published in the April 15 issue of Cancer Research, is the first to systematically search for fusion genes and fusion transcripts linked to different types of breast tumors.

Oncologists currently recognize three basic types of breast tumors — estrogen-receptor (ER)-positive, HER2-positive, and triple negative.

"But breast cancer is much more complex than indicated by these three subtypes, and one of the challenges of treating the disease is to identify gene markers that predict how a tumor will respond to a specific treatment," says senior investigator Edith Perez, M.D., deputy director of the Mayo Clinic Comprehensive Cancer Center in Florida and director of the Breast Cancer Translational Genomics Program, which involves researchers at all three Mayo Clinic campuses.

"The discovery of subtype-specific fusion transcripts in breast cancer represents a step in this direction," she says. "Our findings indicate that fusion transcripts are much more common in breast cancer than had been realized. They represent a new class of mutation whose role in breast cancer is not understood at all."

"Fusion transcripts have the power to produce proteins that are relevant to tumor development, growth, and sensitivity to treatment, so we may have a brand new set of genomic changes that may help us understand, and treat, breast cancer in a new way," says E. Aubrey Thompson, Ph.D., professor of Biology at Mayo Clinic's Comprehensive Cancer Center, and co-director of the Breast Cancer Translational Genomics Program.

"This is a novel discovery that will now require additional investigation," he says. "We need to understand what these fusion transcripts and proteins are doing."

Fusion transcripts are created when chromosomes break apart and recombine, an event that commonly occurs in cancer cells. During this process, fusion genes are created when two halves of normal genes become linked. Fusion genes (DNA) create fusion transcripts (RNA), which then produce fusion proteins.

"Mistakes are made," Dr. Thompson says. "That is one of the salient properties of tumor cells, because they are defective in repairing damage to their genes."

"These mutated proteins may have an entirely new, cancer-promoting function, or they may interfere with normal cellular functions."

Fusion transcripts are common in blood cancers, such as leukemia and lymphoma. Before this discovery, however, few were found in solid cancers such as breast tumors.

Because fusion genes, transcript, and protein are generally found only in tumors, they make ideal biomarkers to identify tumor cells, Dr. Perez says.

Also, proteins produced by fusion transcripts may be relevant to tumor growth, as has been seen in blood cancers and in lung cancer, she says.

"These transcripts may mark regions of localized chromosomal instability that are linked to growth of breast cancer. If we can develop drugs against these transcripts, they will be ideal therapeutic targets," Dr. Perez says. "We have a lot of exciting work to do in the next few years."

The study was supported in part by grants from the State of Florida Bankhead-Coley program, the Breast Cancer Research Foundation, 26.2 with Donna Foundation, Carmichael Family Foundation, Eveleigh Family, National Cancer Institute, and Mayo Foundation.

As a leading institution funded by the National Cancer Institute, Mayo Clinic Cancer Center conducts basic, clinical and population science research, translating discoveries into improved methods for prevention, diagnosis, prognosis and therapy.

About Mayo Clinic

Mayo Clinic is a nonprofit worldwide leader in medical care, research and education for people from all walks of life. For more information, visit or

Paul Scotti | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>