Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Mathematics Behind a Good Night’s Sleep

01.03.2010
Why can’t I fall asleep? Will this new medication keep me up all night? Can I sleep off this cold? Despite decades of research, answers to these basic questions about one of our most essential bodily functions remain exceptionally difficult to answer.

In fact, researchers still don’t fully understand why we even sleep at all. In an effort to better understand the sleep-wake cycle and how it can go awry, researchers at Rensselaer Polytechnic Institute are taking a different approach than the traditional brain scans and sleep studies. They are using mathematics.

Professor of Mathematics Mark Holmes and his graduate student Lisa Rogers are using math to develop a new computer model that can be easily manipulated by other scientists and doctors to predict how different environmental, medical, or physical changes to a person’s body will affect their sleep. Their model will also provide clues to the most basic dynamics of the sleep-wake cycle.

“We wanted to create a very interdisciplinary tool to understand the sleep-wake cycle,” Holmes said. “We based the model on the best and most recent biological findings developed by neurobiologists on the various phases of the cycle and built our mathematical equations from that foundation. This has created a model that is both mathematically and biologically accurate and useful to a variety of scientists.

“This is also an important example of how applied mathematics can be used to solve real issues in science and medicine,” Holmes continued.

To create the model, the researchers literally rolled up their sleeves and took to the laboratory before they put pencil to paper on the mathematical equations. Rogers spent last summer with neurobiologists at Harvard Medical School to learn about the biology of the brain. She investigated the role of specific neurotransmitters within the brain at various points in the sleep-wake cycle. The work taught the budding mathematician how to read EEG (electroencephalography) and EMG (electromyography) data on the brainwaves and muscle activity that occur during the sleep cycle. This biologic data would form the foundation of their mathematic calculations.

This research foundation allowed the team to develop a massive 11-equation model of the sleep-wake cycle. They are now working to input those differential equations into an easy-to-use graphic computer model for biologists and doctors to study.

“We have developed a model that can serve other researchers as a benchmark of the ideal, healthy sleep-wake cycle,” Holmes said. “Scientists will be able to take this ideal model and predict how different disturbances such as caffeine or jet lag will impact that ideal cycle. This is a very non-invasive way to study the brain and sleep that will provide important clues on how to overcome these disturbances and allow patients to have better and more undisturbed sleep.”

Rogers will continue her work on the program after receiving her doctoral degree in applied mathematics from Rensselaer this spring. Her work on the mathematics of the sleep-wake cycle has already garnered attention within the scientific community, earning her a postdoctoral research fellowship from the National Science Foundation (NSF). With the fellowship, Rogers will continue her work at New York University and begin to incorporate other aspects of the sleep-wake cycle in the model such as the impacts of circadian rhythms.

Gabrielle DeMarco | Newswise Science News
Further information:
http://www.rpi.edu

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>