Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Mathematics Behind a Good Night’s Sleep

01.03.2010
Why can’t I fall asleep? Will this new medication keep me up all night? Can I sleep off this cold? Despite decades of research, answers to these basic questions about one of our most essential bodily functions remain exceptionally difficult to answer.

In fact, researchers still don’t fully understand why we even sleep at all. In an effort to better understand the sleep-wake cycle and how it can go awry, researchers at Rensselaer Polytechnic Institute are taking a different approach than the traditional brain scans and sleep studies. They are using mathematics.

Professor of Mathematics Mark Holmes and his graduate student Lisa Rogers are using math to develop a new computer model that can be easily manipulated by other scientists and doctors to predict how different environmental, medical, or physical changes to a person’s body will affect their sleep. Their model will also provide clues to the most basic dynamics of the sleep-wake cycle.

“We wanted to create a very interdisciplinary tool to understand the sleep-wake cycle,” Holmes said. “We based the model on the best and most recent biological findings developed by neurobiologists on the various phases of the cycle and built our mathematical equations from that foundation. This has created a model that is both mathematically and biologically accurate and useful to a variety of scientists.

“This is also an important example of how applied mathematics can be used to solve real issues in science and medicine,” Holmes continued.

To create the model, the researchers literally rolled up their sleeves and took to the laboratory before they put pencil to paper on the mathematical equations. Rogers spent last summer with neurobiologists at Harvard Medical School to learn about the biology of the brain. She investigated the role of specific neurotransmitters within the brain at various points in the sleep-wake cycle. The work taught the budding mathematician how to read EEG (electroencephalography) and EMG (electromyography) data on the brainwaves and muscle activity that occur during the sleep cycle. This biologic data would form the foundation of their mathematic calculations.

This research foundation allowed the team to develop a massive 11-equation model of the sleep-wake cycle. They are now working to input those differential equations into an easy-to-use graphic computer model for biologists and doctors to study.

“We have developed a model that can serve other researchers as a benchmark of the ideal, healthy sleep-wake cycle,” Holmes said. “Scientists will be able to take this ideal model and predict how different disturbances such as caffeine or jet lag will impact that ideal cycle. This is a very non-invasive way to study the brain and sleep that will provide important clues on how to overcome these disturbances and allow patients to have better and more undisturbed sleep.”

Rogers will continue her work on the program after receiving her doctoral degree in applied mathematics from Rensselaer this spring. Her work on the mathematics of the sleep-wake cycle has already garnered attention within the scientific community, earning her a postdoctoral research fellowship from the National Science Foundation (NSF). With the fellowship, Rogers will continue her work at New York University and begin to incorporate other aspects of the sleep-wake cycle in the model such as the impacts of circadian rhythms.

Gabrielle DeMarco | Newswise Science News
Further information:
http://www.rpi.edu

More articles from Health and Medicine:

nachricht Hot cars can hit deadly temperatures in as little as one hour
24.05.2018 | Arizona State University

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>