Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Mathematics Behind a Good Night’s Sleep

01.03.2010
Why can’t I fall asleep? Will this new medication keep me up all night? Can I sleep off this cold? Despite decades of research, answers to these basic questions about one of our most essential bodily functions remain exceptionally difficult to answer.

In fact, researchers still don’t fully understand why we even sleep at all. In an effort to better understand the sleep-wake cycle and how it can go awry, researchers at Rensselaer Polytechnic Institute are taking a different approach than the traditional brain scans and sleep studies. They are using mathematics.

Professor of Mathematics Mark Holmes and his graduate student Lisa Rogers are using math to develop a new computer model that can be easily manipulated by other scientists and doctors to predict how different environmental, medical, or physical changes to a person’s body will affect their sleep. Their model will also provide clues to the most basic dynamics of the sleep-wake cycle.

“We wanted to create a very interdisciplinary tool to understand the sleep-wake cycle,” Holmes said. “We based the model on the best and most recent biological findings developed by neurobiologists on the various phases of the cycle and built our mathematical equations from that foundation. This has created a model that is both mathematically and biologically accurate and useful to a variety of scientists.

“This is also an important example of how applied mathematics can be used to solve real issues in science and medicine,” Holmes continued.

To create the model, the researchers literally rolled up their sleeves and took to the laboratory before they put pencil to paper on the mathematical equations. Rogers spent last summer with neurobiologists at Harvard Medical School to learn about the biology of the brain. She investigated the role of specific neurotransmitters within the brain at various points in the sleep-wake cycle. The work taught the budding mathematician how to read EEG (electroencephalography) and EMG (electromyography) data on the brainwaves and muscle activity that occur during the sleep cycle. This biologic data would form the foundation of their mathematic calculations.

This research foundation allowed the team to develop a massive 11-equation model of the sleep-wake cycle. They are now working to input those differential equations into an easy-to-use graphic computer model for biologists and doctors to study.

“We have developed a model that can serve other researchers as a benchmark of the ideal, healthy sleep-wake cycle,” Holmes said. “Scientists will be able to take this ideal model and predict how different disturbances such as caffeine or jet lag will impact that ideal cycle. This is a very non-invasive way to study the brain and sleep that will provide important clues on how to overcome these disturbances and allow patients to have better and more undisturbed sleep.”

Rogers will continue her work on the program after receiving her doctoral degree in applied mathematics from Rensselaer this spring. Her work on the mathematics of the sleep-wake cycle has already garnered attention within the scientific community, earning her a postdoctoral research fellowship from the National Science Foundation (NSF). With the fellowship, Rogers will continue her work at New York University and begin to incorporate other aspects of the sleep-wake cycle in the model such as the impacts of circadian rhythms.

Gabrielle DeMarco | Newswise Science News
Further information:
http://www.rpi.edu

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

Metallic nanoparticles will help to determine the percentage of volatile compounds

20.10.2017 | Materials Sciences

Shallow soils promote savannas in South America

20.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>