Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mathematical models of adaptive immunity

11.12.2008
More than five million people die every year from infectious diseases, despite the availability of numerous antibiotics and vaccines. The discovery of penicillin to treat bacterial infections, along with the development of vaccines for previously incurable virus diseases such as polio and smallpox, achieved great reductions in mortality during the mid-20th century.

Recently, spectacular advances in medical imaging combined with mathematical tools for modelling the human immune system have provided a base for a new push against infectious disease. The challenges and opportunities presented by these new experimental and theoretical technologies were discussed at a recent workshop organised by the European Science Foundation (ESF), which set out an agenda for quantitative immunology.

"A better understanding of how the immune system responds to infection and of the factors that determine whether an infection results in protective immunity or disease could lead to medical advances resulting in a great reduction in human suffering", said Paul Garside, director of the Centre for Biophotonics at the University of Strathclyde, and Carmen Molina-Paris and Grant Lythe, applied mathematician at the University of Leeds, co-convenors of the ESF workshop.

The fact that a conference on immunology should be co-convened by mathematicians typifies the change in the field from a qualitative science into a quantitative one using comprehensive data sets derived from imaging. This should help answer the question of why a given infection is controlled by the immune system in some people, leading to prolonged adaptive immunity, while in others causes serious disease. The answer depends on numerous factors relating to interaction between metabolism, immune system pathways, and even external factors such as diet and micro-organisms in the gut. Unravelling these factors requires mathematical modelling based on data obtained from images of the processes as they actually take place in the body, combined with chemical analysis of samples such as urine or blood.

One technology in particular, two-photon microscopy, is providing valuable data on immune processes, such as movement and interaction between cells, in real time, as they happen. Two-photon microscopy evolved from conventional light microscopy and exploits the fluorescence effect, causing the object of interest to emit light that can then be observed in high resolution. The ESF workshop focused on how modelling and imaging could help resolve the complex immunological and metabolic interactions between three key groups of cells involved in defence against disease, T cells, B cells, and dendritic cells. T cells are a type of white blood cell involved in the adaptive memory against previous infections, in destroying infected viral or tumour cells, and in mediating the immune response to avoid an attack on the host organism. B cells are another type of white blood cell, producing antibodies that identify and mark invading pathogens such as bacteria, also playing a key role in adaptive memory. Dendritic cells aid the other immune cells by processing invading pathogens at an early stage and presenting their antigens (unique surface components, including proteins and carbohydrates, identifying a pathogen) so that they are easily accessible to those other immune cells.

"Modelling the interactions of T cells, B cells and APCs (Antigen presenting cells) such as dendritic cells in the lymph node is one of the great challenges we face", said Garside, Lythe and Molina-Paris. "In particular, it is essential to understand the timescales of these interactions."

There are also broader questions identified at the ESF workshop, such as how the immune system maintains such great diversity in its repertoire of mature antibodies, providing protection against such a wide range of pathogens, while at the same time it is able to discriminate between self and non-self, and achieve a proportionate response to infection, so that collateral damage against the host is minimised. The importance of this fine regulation is emphasised when it goes wrong, for example in septic shock when the immune system over reacts to a pathogen, or in chronic auto immune diseases such as MS or rheumatoid arthritis, when these immune cells attack the body's own tissue. Although the ESF workshop concentrated on infectious diseases, the research it will stimulate will also lead to better understanding and improved therapies for these conditions where the immune system malfunctions.

The ESF workshop, Challenges for experimental and theoretical immunology, was held in Leeds, UK in September 2008.

For more information please go to www.esf.org/activities/exploratory-workshops/medical-sciences-emrc/workshops-detail.html?ew=6475

Thomas Lau | alfa
Further information:
http://www.esf.org

More articles from Health and Medicine:

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

nachricht Stem cell transplants: activating signal paths may protect from graft-versus-host disease
20.04.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>