Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mathematical models of adaptive immunity

11.12.2008
More than five million people die every year from infectious diseases, despite the availability of numerous antibiotics and vaccines. The discovery of penicillin to treat bacterial infections, along with the development of vaccines for previously incurable virus diseases such as polio and smallpox, achieved great reductions in mortality during the mid-20th century.

Recently, spectacular advances in medical imaging combined with mathematical tools for modelling the human immune system have provided a base for a new push against infectious disease. The challenges and opportunities presented by these new experimental and theoretical technologies were discussed at a recent workshop organised by the European Science Foundation (ESF), which set out an agenda for quantitative immunology.

"A better understanding of how the immune system responds to infection and of the factors that determine whether an infection results in protective immunity or disease could lead to medical advances resulting in a great reduction in human suffering", said Paul Garside, director of the Centre for Biophotonics at the University of Strathclyde, and Carmen Molina-Paris and Grant Lythe, applied mathematician at the University of Leeds, co-convenors of the ESF workshop.

The fact that a conference on immunology should be co-convened by mathematicians typifies the change in the field from a qualitative science into a quantitative one using comprehensive data sets derived from imaging. This should help answer the question of why a given infection is controlled by the immune system in some people, leading to prolonged adaptive immunity, while in others causes serious disease. The answer depends on numerous factors relating to interaction between metabolism, immune system pathways, and even external factors such as diet and micro-organisms in the gut. Unravelling these factors requires mathematical modelling based on data obtained from images of the processes as they actually take place in the body, combined with chemical analysis of samples such as urine or blood.

One technology in particular, two-photon microscopy, is providing valuable data on immune processes, such as movement and interaction between cells, in real time, as they happen. Two-photon microscopy evolved from conventional light microscopy and exploits the fluorescence effect, causing the object of interest to emit light that can then be observed in high resolution. The ESF workshop focused on how modelling and imaging could help resolve the complex immunological and metabolic interactions between three key groups of cells involved in defence against disease, T cells, B cells, and dendritic cells. T cells are a type of white blood cell involved in the adaptive memory against previous infections, in destroying infected viral or tumour cells, and in mediating the immune response to avoid an attack on the host organism. B cells are another type of white blood cell, producing antibodies that identify and mark invading pathogens such as bacteria, also playing a key role in adaptive memory. Dendritic cells aid the other immune cells by processing invading pathogens at an early stage and presenting their antigens (unique surface components, including proteins and carbohydrates, identifying a pathogen) so that they are easily accessible to those other immune cells.

"Modelling the interactions of T cells, B cells and APCs (Antigen presenting cells) such as dendritic cells in the lymph node is one of the great challenges we face", said Garside, Lythe and Molina-Paris. "In particular, it is essential to understand the timescales of these interactions."

There are also broader questions identified at the ESF workshop, such as how the immune system maintains such great diversity in its repertoire of mature antibodies, providing protection against such a wide range of pathogens, while at the same time it is able to discriminate between self and non-self, and achieve a proportionate response to infection, so that collateral damage against the host is minimised. The importance of this fine regulation is emphasised when it goes wrong, for example in septic shock when the immune system over reacts to a pathogen, or in chronic auto immune diseases such as MS or rheumatoid arthritis, when these immune cells attack the body's own tissue. Although the ESF workshop concentrated on infectious diseases, the research it will stimulate will also lead to better understanding and improved therapies for these conditions where the immune system malfunctions.

The ESF workshop, Challenges for experimental and theoretical immunology, was held in Leeds, UK in September 2008.

For more information please go to www.esf.org/activities/exploratory-workshops/medical-sciences-emrc/workshops-detail.html?ew=6475

Thomas Lau | alfa
Further information:
http://www.esf.org

More articles from Health and Medicine:

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht What does congenital Zika syndrome look like?
24.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>