Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mathematical models of adaptive immunity

11.12.2008
More than five million people die every year from infectious diseases, despite the availability of numerous antibiotics and vaccines. The discovery of penicillin to treat bacterial infections, along with the development of vaccines for previously incurable virus diseases such as polio and smallpox, achieved great reductions in mortality during the mid-20th century.

Recently, spectacular advances in medical imaging combined with mathematical tools for modelling the human immune system have provided a base for a new push against infectious disease. The challenges and opportunities presented by these new experimental and theoretical technologies were discussed at a recent workshop organised by the European Science Foundation (ESF), which set out an agenda for quantitative immunology.

"A better understanding of how the immune system responds to infection and of the factors that determine whether an infection results in protective immunity or disease could lead to medical advances resulting in a great reduction in human suffering", said Paul Garside, director of the Centre for Biophotonics at the University of Strathclyde, and Carmen Molina-Paris and Grant Lythe, applied mathematician at the University of Leeds, co-convenors of the ESF workshop.

The fact that a conference on immunology should be co-convened by mathematicians typifies the change in the field from a qualitative science into a quantitative one using comprehensive data sets derived from imaging. This should help answer the question of why a given infection is controlled by the immune system in some people, leading to prolonged adaptive immunity, while in others causes serious disease. The answer depends on numerous factors relating to interaction between metabolism, immune system pathways, and even external factors such as diet and micro-organisms in the gut. Unravelling these factors requires mathematical modelling based on data obtained from images of the processes as they actually take place in the body, combined with chemical analysis of samples such as urine or blood.

One technology in particular, two-photon microscopy, is providing valuable data on immune processes, such as movement and interaction between cells, in real time, as they happen. Two-photon microscopy evolved from conventional light microscopy and exploits the fluorescence effect, causing the object of interest to emit light that can then be observed in high resolution. The ESF workshop focused on how modelling and imaging could help resolve the complex immunological and metabolic interactions between three key groups of cells involved in defence against disease, T cells, B cells, and dendritic cells. T cells are a type of white blood cell involved in the adaptive memory against previous infections, in destroying infected viral or tumour cells, and in mediating the immune response to avoid an attack on the host organism. B cells are another type of white blood cell, producing antibodies that identify and mark invading pathogens such as bacteria, also playing a key role in adaptive memory. Dendritic cells aid the other immune cells by processing invading pathogens at an early stage and presenting their antigens (unique surface components, including proteins and carbohydrates, identifying a pathogen) so that they are easily accessible to those other immune cells.

"Modelling the interactions of T cells, B cells and APCs (Antigen presenting cells) such as dendritic cells in the lymph node is one of the great challenges we face", said Garside, Lythe and Molina-Paris. "In particular, it is essential to understand the timescales of these interactions."

There are also broader questions identified at the ESF workshop, such as how the immune system maintains such great diversity in its repertoire of mature antibodies, providing protection against such a wide range of pathogens, while at the same time it is able to discriminate between self and non-self, and achieve a proportionate response to infection, so that collateral damage against the host is minimised. The importance of this fine regulation is emphasised when it goes wrong, for example in septic shock when the immune system over reacts to a pathogen, or in chronic auto immune diseases such as MS or rheumatoid arthritis, when these immune cells attack the body's own tissue. Although the ESF workshop concentrated on infectious diseases, the research it will stimulate will also lead to better understanding and improved therapies for these conditions where the immune system malfunctions.

The ESF workshop, Challenges for experimental and theoretical immunology, was held in Leeds, UK in September 2008.

For more information please go to www.esf.org/activities/exploratory-workshops/medical-sciences-emrc/workshops-detail.html?ew=6475

Thomas Lau | alfa
Further information:
http://www.esf.org

More articles from Health and Medicine:

nachricht NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures
17.11.2017 | National Institute of Standards and Technology (NIST)

nachricht High speed video recording precisely measures blood cell velocity
15.11.2017 | ITMO University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>