Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


The math of malaria

Malaria affects over 200 million individuals every year and kills hundreds of thousands of people worldwide.

The disease varies greatly from region to region in the species that cause it and in the carriers that spread it. It is easily transmitted across regions through travel and migration. This results in outbreaks of the disease even in regions that are essentially malaria-free, such as the United States.

Malaria has been nearly eliminated in the U.S. since the 1950s, but the country continues to see roughly 1,500 cases a year, most of them from travelers. Hence, the movement or dispersal of populations becomes important in the study of the disease.

In a paper published this month in the SIAM Journal on Applied Mathematics, authors Daozhou Gao and Shigui Ruan propose a mathematical model to study malaria transmission.

“Malaria is a parasitic vector-borne disease caused by the plasmodium parasite, which is transmitted to people via the bites of infected female mosquitoes of the genus Anopheles,” says Ruan. “It can be easily transmitted from one region to another due to extensive travel and migration.”

The life cycle of plasmodium involves incubation periods in two hosts, the human and the mosquito. Therefore, mathematical modeling of the spread of malaria usually focuses on the feedback dynamics from mosquito to human and back. Early models were based on malaria parasites’ population biology and evolution. But increased computing power in recent years has allowed models for the disease to become more detailed and complex.

Mathematical models that study transmission of malaria are based on the “reproduction number,” which defines the most important aspects of transmission for any infectious disease. Specifically, it is calculated by determining the expected number of infected organisms that can trace their infection directly back to a single organism after one disease generation. The solution to controlling the disease is to arrive at a reproduction number at which the disease-free state can be established and maintained.

Previous studies used ordinary differential equations to model the transmission of malaria, in which human populations are classified as susceptible, exposed, infectious and recovered. Likewise, mosquito populations are divided into susceptible, exposed and infectious groups. The threshold below which the disease-free equilibrium can be maintained is determined by varying these parameters.

In order to analyze transmission rates of malaria between regions, multi-patch models are used, where each region is a “patch.” These models study how the reproduction number is affected by dispersal or movement of exposed and infectious individuals from region to region.

The authors in this paper model the transmission dynamics of malaria between humans and mosquitoes within a patch, and then go on to examine how population dispersal between patches or regions affects the spread of malaria in a two-patch model.

After deriving the reproduction number, they determine its dependence on human travel rates. Their analysis shows that reproduction number varies consistently with movement of exposed, infectious and recovered humans. The same is seen to be true for the movement of infected mosquitoes. “A threshold for the persistence of malaria was obtained, below which the disease dies out and above which the disease persists,” explains Ruan. “Analysis of the threshold helps us design effective control measures to reduce disease transmission.”

The authors determine that malaria can potentially die out if movement of exposed, infectious or recovered humans between two patches or regions remains weak; higher travel rates between the patches, however, can make malaria indigenous to both regions. Numerical simulations are performed to corroborate these findings.

The paper thus concludes that human travel is a critical factor affecting the spread of malaria. “The analytical and numerical results confirm that human movement plays a significant role in the geographic spread of malaria among different regions,” says Ruan. Anti-malaria measures should involve more rigorous border screening and regulation, since exposed individuals who don’t exhibit symptoms of the disease—but are infectious—are hard to identify at screenings. “To control malaria, both regional and global strategies are needed,” he says.

Future directions for this research include testing the global stability of this model in more than two patches, and studying other influencers, such as climate. “Climate factors such as rainfall and temperature greatly influence the abundance and distribution of malaria vectors,” Ruan says. “It will be very interesting to study the impact of climate change on the transmission of malaria by considering periodic malaria models.”

About the authors:
Dr. Shigui Ruan is a professor and Daozhou Gao is a graduate student/ teaching assistant in the Department of Mathematics at The University of Miami. This work was partially supported by NSF grant DMS-1022728 and NIH grant R01GM093345.

Source article:

A Multipatch Malaria Model with Logistic Growth Populations

Shigui Ruan and Daozhou Gao, SIAM Journal on Applied Mathematics, 72(3), 819–841. (Online publish date: June 7, 2012)

Karthika Muthukumaraswamy | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>