Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Maternal exposure to outdoor air pollution associated with low birth weights worldwide

06.02.2013
Largest study of its kind shows link between outdoor particulate pollution and impaired fetal growth

Mothers who are exposed to particulate air pollution of the type emitted by vehicles, urban heating and coal power plants are significantly more likely to bear children of low birth weight, according to an international study led by co-principal investigator Tracey J. Woodruff, PhD, MPH, professor of obstetrics and gynecology and reproductive sciences at UC San Francisco along with Jennifer Parker, PhD, of the National Center for Health Statistics, Centers for Disease Control and Prevention.

The study, the largest of its kind ever performed, analyzed data collected from more than three million births in nine nations at 14 sites in North America, South America, Europe, Asia and Australia.

The researchers found that at sites worldwide, the higher the pollution rate, the greater the rate of low birth weight.

Low birth weight (a weight below 2500 grams or 5.5 pounds) is associated with serious health consequences, including increased risk of postnatal morbidity and mortality and chronic health problems in later life, noted lead author Payam Dadvand, MD, PhD, of the Centre for Research in Environmental Epidemiology (CREAL) in Barcelona, Spain.

In the study, published on February 6th, 2013 in the journal Environmental Health Perspectives, the team assessed data collected from research centers in the International Collaboration on Air Pollution and Pregnancy Outcomes, an international research collaborative established in 2007 to study the effects of pollution on pregnancy outcomes. Most of the data assessed was collected during the mid-1990s to the late 2000s, and in some cases, earlier.

"What's significant is that these are air pollution levels to which practically everyone in the world is commonly exposed," said Woodruff. "These microscopic particles, which are smaller than the width of a human hair, are in the air that we all breathe."

Woodruff noted that nations with tighter regulations on particulate air pollution have lower levels of these air pollutants. "In the United States, we have shown over the last several decades that the benefits to health and wellbeing from reducing air pollution are far greater than the costs," said Woodruff. "This is a lesson that all nations can learn from."

Particulate air pollution is measured in size (microns) and weight (micrograms per cubic meter). In the United States, federal regulations require that the yearly average concentration in the air to be no more than 12 µg/m3 of particles measuring less than 2.5 microns. In the European Union, the limit is 25 µg/m3, and regulatory agencies there are currently debating whether to lower it.

"This study comes at the right time to bring the issue to the attention of policy makers," said study co-author Mark Nieuwenhuijsen, PhD, of CREAL.

Nieuwenhuijsen observed that particulate air pollution in Beijing, China has recently been measured higher than 700 µg/m3.

"From the perspective of world health, levels like this are obviously completely unsustainable," he said.

Whether these pregnancy exposures can have effects later in life, currently is under investigation through an epidemiological follow-up of some of the children included in these studies.

Co-authors of the paper are Michelle L. Bell of Yale University; Matteo Bonzini of the University of Insubria, Varese, Italy; Michael Brauer of the University of British Columbia; Lyndsey Darrow of Emory University, Atlanta, Georgia; Ulrike Gehring of Utrecht University, the Netherlands; Svetlana V. Glinianaia of Newcastle University, United Kingdom; Nelson Gouveia of the University of Sao Paulo, Brazil; Eunhee Ha of Ewha Womans University, Seoul, Republic of Korea; Jong Han Leem of Inha University, Inchon, Republic of Korea; Edith H. van den Hooven of Erasmus Medical Center, Rotterdam the Netherlands; Bin Jalaludin of the University of New South Wales, Australia; Bill M. Jesdale of UC Berkeley; Johanna Lepeule of Harvard University and INSERM, Grenoble, France; Rachel Morello-Frosch of UC Berkeley; Geoffrey G. Morgan of the University of Sydney, Australia; Angela Cecilia Pesatori of Università di Milano, Milan, Italy; Frank H. Pierik of Urban Environment and Safety, TNO, Utrecht, the Netherlands; Tanja Pless-Mulloli of Newcastle University; David Q. Rich of the University of Rochester, New York; Sheela Sathyanarayana of the University of Washington; Juhee Seo of Ewha Womans University; Rémy Slama of INSERM, Grenoble, France; Matthew Strickland of Emory University; Lillian Tamburic of the University of British Columbia;and Daniel Wartenberg of UMDNJ-Robert Wood Johnson Medical School.

The study was supported by funds from the Environmental Protection Agency and the National Institute for Environmental Sciences in the United States; the Wellcome Fund in the United Kingdom; and the Ministry of Science and Innovation in Spain. In Vancouver, British Columbia, the BC Ministry of Health, the BC Vital Statistics Agency and the BC Reproductive Care Program approved access to and use of data facilitated by Population Data BC.

UCSF is a leading university dedicated to promoting health worldwide through advanced biomedical research, graduate-level education in the life sciences and health professions, and excellence in patient care.

Karin Rush-Monroe | EurekAlert!
Further information:
http://www.ucsf.edu

More articles from Health and Medicine:

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>