Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Master gene Math1 controls framework for perceiving external and internal body parts

Waking and walking to the bathroom in the pitch black of night requires brain activity that is both conscious and unconscious and requires a single master gene known as Math1 or Atoh1, said Baylor College of Medicine ( researchers in a report that appears online in the Proceedings of the National Academy of Sciences.

Math1 is a master hub for the genes that control various parts of neural networks for hearing, balance, the unconscious sense of one's position in space called proprioception and in a new finding, interoception, which is associated with activities such as awakening because of a full bladder or a distended colon, said Dr. Huda Zoghbi (, professor of molecular and human genetics, pediatrics, neurology and neuroscience at BCM and Dr. Matthew Rose (, an M.D./Ph.D. student in Zoghbi's laboratory.

"It surprises us," said Zoghbi, who is also director of the Jan and Dan Duncan Neurological Institute at Texas Children's Hospital ( and a Howard Hughes Medical Institute investigator. "We knew Math1 was important for hearing and proprioception. Now we know this gene lays the foundation for knowing where you are with respect to the environment and how to move safely within it – automatically."

The findings demonstrate a genetic, developmental and functional link among the diverse sensory systems that govern conscious and unconscious proprioception, interoception, hearing, balance and arousal (as from sleep), said Dr. Kaashif Ahmad (, a neonatology fellow at BCM and Texas Children's and a member of Zoghbi's laboratory.

Suppose you are walking in the forest and suddenly a predator is heading for you, Zoghbi said. The hearing and sound-localizing activities controlled by this gene allow you to localize the position of the predator and run quickly in the direction away from the predator.

Math1 is a key component of the system that gets you moving automatically in response to internal and external stimuli. In a recent study, the Zoghbi laboratory showed that Math1 also plays a key role in the circuitry of breathing.

"It is possible that some of the neurons that sense movement inside and outside the body are also stimulating the respiratory network of infants when they are born," said Rose.

Studying Math1 is exciting, he said, because many different types of neurons require the gene throughout the brainstem and then connect together in the same sensory networks.

"Math1 is necessary not only for neurons that sense a full bladder but also for those that wake you up and let you find your way to the bathroom in the dark," Rose said. "The key now will be to map out all these connections in greater detail."

Dr. Christina Thaller, associate professor of biochemistry at BCM, took part in this research.

Funding for this work came from the National Institute of Neurological Disorders and Stroke, the National Institute of Child Health and Human Development, the Baylor Intellectual and Developmental Disorders Research Center, the Baylor Research Advocates for Student Scientists and the Howard Hughes Medical Institute.

For more information on basic science research at Baylor College of Medicine, please go to or

Glenna Picton | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Inflammation Triggers Unsustainable Immune Response to Chronic Viral Infection
24.10.2016 | Universität Basel

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>