Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Mass. General research could expand availability of hand, face transplants

Immune tolerance to grafts of muscle, bone and skin could free recipients from lifelong immunosuppression

Massachusetts General Hospital (MGH) investigators have made an important step towards greater availability of hand transplants, face transplants and other transplants involving multiple types of tissue.

In their report in the American Journal of Transplantation, the team describes how a procedure developed at the MGH to induce immune tolerance to organ transplants also induces tolerance to a model limb transplant in miniature swine. Transplantation of donor bone marrow – either several months before or simultaneous with the transplant – allowed the animals to accept what are called vascularized composite allografts (VCAs) from immunologically mismatched donors.

"The need for lifelong immunosuppression to prevent graft rejection is the most important challenge in this type of procedure, since most potential VCA recipients are young and would face increased risks of infection, diabetes or kidney problems, and even some types of cancer over many years," says Curtis L. Cetrulo, Jr., MD, head of the Hand Transplantation Service in the MGH Division of Plastic and Reconstructive Surgery and senior author of the current report.

"Bringing immunologic tolerance to hand and face transplantation would result in a paradigm shift in the way we will be able to treat the horrific injuries our service members are sustaining in the current military conflicts in Iraq and Afghanistan, as well for the types of blast-injury extremity loss seen in the Boston Marathon bombing. Tolerance would give us a unique tool – a real game changer – with which to help these patients," he says.

Most frequently used to replace amputated hands and arms and to repair severe facial injuries, VCAs involve transplantation of muscle, bone, skin and nerves. While offering significant improvement in recipients' quality of life, the procedures are not required to preserve a patient's life, making the need for lifelong immunosuppression a disadvantage. The induction of immune tolerance – essentially tricking a recipient's immune system into accepting donor tissue – could be an ideal solution to that problem.

The MGH is a world leader in the development of tolerance-inducing protocols. Several decades of research led by David H. Sachs, MD, founder and scientific director of the MGH Transplantation Biology Research Center (TBRC), led to a protocol in which transplant recipients receive both the needed organ and bone marrow from a living donor, producing a state called mixed chimerism, in which the patient's immune system contains both donor and recipient elements. A number of patients have received kidney transplants using versions of this protocol – which is still considered experimental – and were subsequently able to discontinue immunosuppressive drugs. Most of these patients have been able to remain off immunosuppressive medications long term, some for more than a decade.

The current study was designed to test whether a similar protocol could induce tolerance to VCAs from immunologically mismatched donors in an animal model. An additional challenge is posed by the fact that skin, an essential part of a VCA, carries what could be considered its own immune system, making its acceptance by a recipient's immune system particularly problematic. In several previous attempts to induce VCA tolerance, bone and muscle tissue were accepted but the skin was rejected and eventually separated from the underlying tissue.

Building on previous TBRC animal studies, the researchers tested whether combining bone marrow transplantation with VCA could induce chimerism and tolerance. In the first phase of the study, four recipient animals received bone marrow transplants from immunologically mismatched donors in advance, allowing time to confirm that chimerism had been established before the VCA procedure – involving transplantation of components of a hind limb from the same donor – was carried out three to five months later. Even though the recipients received no immunosuppression after the transplant procedure, all animals accepted the transplant with no sign of rejection.

Since pretransplant induction of chimerism would not be practical for hand or face transplants from deceased donors, the researchers tested VCA surgery conducted simultaneously with the bone marrow transplantation to induce tolerance in two recipient animals. Chimerism was successfully induced in both recipients, and overall results were the same as in the other group – immune tolerance of all components of the VCA with no evidence of rejection throughout the follow-up period, which for one recipient was more than 480 days.

In both groups of animals, the immune systems were preconditioned to accept donor immune cells prior to bone marrow transplantation. Since the availability of donor tissues cannot be precisely predicted, Cetrulo explains, the MGH team is exploring two approaches to the issue of timing the procedures. In one, immune conditioning begins as soon as a donor is identified and the transplant confirmed and continues during and immediately after a simultaneous bone marrow transplant/VCA procedure. The second adapts a protocol developed for organ transplantation in which the recipient receives conventional immunosuppression after VCA surgery and then immune conditioning and transplantation of donor marrow collected at the time of VCA are performed several months later.

"Along with investigating the role of skin-specific immunobiology in VCA tolerance, with the aim of identifying mechanisms that might by harnessed by clinical protocols of the future, we'll be conducting preclinical evaluation of both of the tolerance preconditioning protocols, which if successful, could be ready for testing in a clinical trial within the next year," says Cetrulo.

Christene A. Huang, PhD, of the MGH TBRC is a co-corresponding author of the American Journal of Transplantation paper; and David Leonard, MB ChB, and Josef Kurtz, PhD, of the TBRC are co-lead authors. Additional co-authors are C. Mallard, A. Albritton, R. Duran-Struuck, R. Crepeau, A. Matar, B. Horner and David H. Sachs, MD, of the TBRC; Mark Randolph, MGH Plastic and Reconstructive Surgery; and Evan Farkash, MD, PhD, MGH Pathology. Funding for the study includes National Institutes of Health grants NCI P01CA111519 and NIAID RO1A1084657, along with support from the Musculoskeletal Transplant Foundation and the Melina Nakos Foundation.

Massachusetts General Hospital, founded in 1811, is the original and largest teaching hospital of Harvard Medical School. The MGH conducts the largest hospital-based research program in the United States, with an annual research budget of more than $775 million and major research centers in AIDS, cardiovascular research, cancer, computational and integrative biology, cutaneous biology, human genetics, medical imaging, neurodegenerative disorders, regenerative medicine, reproductive biology, systems biology, transplantation biology and photomedicine.

Kristen Chadwick | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>