Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Markey Researchers Develop Web-Based App to Predict Glioma Mutations

20.08.2014

A new web-based program developed by University of Kentucky Markey Cancer Center researchers will provide a simple, free way for healthcare providers to determine which brain tumor cases require testing for a genetic mutation.

Gliomas – a type of tumor that begins in the brain or spine – are the most common and deadly form of brain cancer in adults, making up about 80 percent of malignant brain cancer cases.

In some of these cases, patients have a mutation in a specific gene, known as an IDH1 mutation – and patients who have this tend to survive years longer than those who do not carry the mutation. 

The program, developed by UK researchers Li Chen, Eric Durbin, and Craig Horbinski, uses a statistical model to accurately predict the likelihood that a patient carries the IDH1 mutation and requires screening. Healthcare providers need only answer four questions in the application. 

Gliomas are often tested for IDH1 mutation following surgery to remove the tumor, but undergoing this type of testing often requires stringent insurance pre-approvals due to rising healthcare costs, Horbinski says. 

"Currently, there are no universally accepted guidelines for when gliomas should be tested for this mutation," Horbinski said. "Obtaining insurance pre-approval for additional molecular testing is becoming more commonplace, and this program will assist healthcare providers with an evidence-based rationale for when IDH1 screening is necessary."

Additionally, Horbinski notes that the program will help conserve research dollars by helping brain cancer researchers narrow down which specific older gliomas in tumor banks – previously removed in a time before IDH1 testing was routine – should be tested as data for research projects. 

Horbinski's research on the program was published in the May issue of Neuro-Oncology. The work was funded through a grant from the National Cancer Institute, the Peter and Carmen Lucia Buck Training Program in Translational Clinical Oncology, and the University of Kentucky College of Medicine Physician Scientist Program. 

MEDIA CONTACT: Allison Perry, (859) 323-2399 or allison.perry@uky.edu

Allison Perry | Eurek Alert!
Further information:
http://uknow.uky.edu/content/markey-researchers-develop-web-based-app-predict-glioma-mutations

Further reports about: Cancer Gliomas IDH1 Kentucky Medicine Neuro-Oncology guidelines

More articles from Health and Medicine:

nachricht New evidence: How amino acid cysteine combats Huntington's disease
27.07.2016 | Johns Hopkins Medicine

nachricht Cord blood outperforms matched, unrelated donor in bone marrow transplant
27.07.2016 | University of Colorado Anschutz Medical Campus

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-assembling nano inks form conductive and transparent grids during imprint

Transparent electronics devices are present in today’s thin film displays, solar cells, and touchscreens. The future will bring flexible versions of such devices. Their production requires printable materials that are transparent and remain highly conductive even when deformed. Researchers at INM – Leibniz Institute for New Materials have combined a new self-assembling nano ink with an imprint process to create flexible conductive grids with a resolution below one micrometer.

To print the grids, an ink of gold nanowires is applied to a substrate. A structured stamp is pressed on the substrate and forces the ink into a pattern. “The...

Im Focus: The Glowing Brain

A new Fraunhofer MEVIS method conveys medical interrelationships quickly and intuitively with innovative visualization technology

On the monitor, a brain spins slowly and can be examined from every angle. Suddenly, some sections start glowing, first on the side and then the entire back of...

Im Focus: Newly discovered material property may lead to high temp superconductivity

Researchers at the U.S. Department of Energy's (DOE) Ames Laboratory have discovered an unusual property of purple bronze that may point to new ways to achieve high temperature superconductivity.

While studying purple bronze, a molybdenum oxide, researchers discovered an unconventional charge density wave on its surface.

Im Focus: Mapping electromagnetic waveforms

Munich Physicists have developed a novel electron microscope that can visualize electromagnetic fields oscillating at frequencies of billions of cycles per second.

Temporally varying electromagnetic fields are the driving force behind the whole of electronics. Their polarities can change at mind-bogglingly fast rates, and...

Im Focus: Continental tug-of-war - until the rope snaps

Breakup of continents with two speed: Continents initially stretch very slowly along the future splitting zone, but then move apart very quickly before the onset of rupture. The final speed can be up to 20 times faster than in the first, slow extension phase.phases

Present-day continents were shaped hundreds of millions of years ago as the supercontinent Pangaea broke apart. Derived from Pangaea’s main fragments Gondwana...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

GROWING IN CITIES - Interdisciplinary Perspectives on Urban Gardening

15.07.2016 | Event News

SIGGRAPH2016 Computer Graphics Interactive Techniques, 24-28 July, Anaheim, California

15.07.2016 | Event News

Partner countries of FAIR accelerator meet in Darmstadt and approve developments

11.07.2016 | Event News

 
Latest News

New study reveals where MH370 debris more likely to be found

27.07.2016 | Earth Sciences

Dirty to drinkable

27.07.2016 | Materials Sciences

Exploring one of the largest salt flats in the world

27.07.2016 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>