Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Markerless motion capture offers a new angle on tennis injuries

18.01.2012
A new approach to motion capture technology is offering fresh insights into tennis injuries – and orthopedic injuries in general.

Researchers studied three types of tennis serves, and identified one in particular, called a “kick” serve, which creates the highest potential for shoulder injury.

The results, published in a recent issue of Annals of Biomedical Engineering, could aid sports training and rehab, said Alison Sheets, assistant professor of mechanical engineering at Ohio State University.

With further development, she added, doctors could use her “markerless motion capture” technique to diagnose patients.

“The potential for markerless motion capture in medicine is vast and exciting, because it can quantify how a person moves without the need to attach electronic markers or other equipment to their body,” Sheets said. “People can move naturally, and in a natural setting outside of a laboratory.”

Traditional motion capture technology works by attaching markers to a subject’s skin or clothing and tracking them as the subject moves, she explained. The markers can emit an electronic signal or reflect light, and the associated wiring and other equipment can limit or otherwise influence people’s movement. Moreover, the tracking has to take place in a laboratory setting, where lighting and background are carefully controlled.

Sheets and her colleagues are working to do away with the markers and take motion capture out of the laboratory.

For a project at Stanford University – where Sheets was a postdoctoral researcher before coming to Ohio State – she was part of a team that designed a system of eight video cameras that record a person’s movements at the same time, each shooting from a different angle.

A computer program combines the images to identify the 3D volume and shape of the person in each video frame. By comparing this shape to precise body measurements of the person under study, researchers can pinpoint the parts of the body that engage for a particular action, such as serving a tennis ball.

Study coauthor Marc Safran, MD, an expert in shoulder surgery at Stanford, proposed the project in order to investigate why he’d seen an uptick in the number of tennis players with shoulder injuries. Safran’s own 2005 research had shown that tennis injury rates had risen to as high as 20 injuries per 1,000 hours played, with most injuries to the upper body.

“To understand the cause of these injuries, we wanted to study how players move in a real, game-like situation,” Sheets said.

They recruited seven members of the Stanford men’s varsity tennis team for the study. The serve is the most often performed stroke in the game, so researchers focused on gauging the effects of three common types of serves on the players’ back, arm, and shoulder joints.

A tennis serve is analogous to a baseball pitch, in that a player must deliver the ball to particular location. In baseball, it’s the “strike zone,” and in tennis it’s the “service box,” an in-bounds section of the opposite side of the court. And – just like a pitcher – a server artfully delivers the ball to make it harder to hit.

The first serve in the study, the “flat” serve, is a straight shot down the center of the court – similar to a pitcher’s fastball. The second, the “slice” serve, requires the player to brush the racquet against the ball sideways during the hit. That gives the ball a slight spin that makes it skid across the ground and take an unpredictable bounce – somewhat analogous to the unpredictable flight of baseball’s knuckle ball.

The last, the “kick” serve, requires the player to brush the ball upwards from underneath, giving it a lot of topspin. Just like a pitcher’s curve ball, the kick serve sends the ball sideways along a wide arc. Ideally, it drops into the opponent’s service box from high above, and produces an equally steep bounce.

Sheets draws one big difference between a tennis serve and a baseball pitch, however.

“In baseball, a pitcher uses the arm like a whip. The movement is sequential – shoulder, elbow, wrist. But in tennis, the shoulder and elbow move together toward the ball, followed by the elbow alone and then finally the wrist, so that the racquet is moving the fastest right before ball impact.”

“For the flat serve, the player puts almost of all of the energy into moving the racquet in the forward direction,” she continued. “But for the kick serve, the player is also trying to precisely time upwards and sideways racquet movements to generate that characteristic spin.”

The study examined the difference in body positioning for the three serves. Researchers measured the distance between the vertical center line of a player’s body and the hitting surface of the racquet when the player hit the ball. For the kick serve, players swung the racquet closer to the center -- about 21 cm (8 inches) and 16 cm (6 inches) closer than for the flat serve and slice serve, respectively. The players also extended the racquet farther behind them for the kick serve: 8 cm (3 inches) farther than for the flat serve.

Those measurements suggest that the kick serve generates larger forces on muscles crossing the shoulder joint than the other two serves, which could promote injury, Sheets said.

She’s now working with Ajit Chaudhari and Timothy Hewitt of OSU Sports Medicine, who study ACL injuries – a tearing of a ligament in the knee joint. She also has a new project with D. Michele Basso, professor of physical medicine and rehabilitation, to use the technique with animals in order to develop more effective spinal cord injury rehabilitation protocols.

Sheets envisions that tennis coaches could use motion capture analysis of their players – both to prevent injury and improve performance. She doesn’t think the kick serve itself is going to change anytime soon, though.

“I can see how motion capture might change training and rehab, but I don’t think it’ll change how the game is played,” she said. “In tennis as in all sports, you do whatever it takes to keep your opponent on their toes.”

Other coauthors on the tennis study include Geoffrey D. Abrams and Thomas P. Andriacchi of Stanford and Stefano Corazza of Mixamo Inc. in San Francisco. The research was funded by the BioMotion Laboratory at Stanford.

Contact: Alison Sheets, (614) 247-6367; Sheets.203@osu.edu
Written by Pam Frost Gorder, (614) 292-9475; Gorder.1@osu.edu

Alison Sheets | EurekAlert!
Further information:
http://www.osu.edu

More articles from Health and Medicine:

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

nachricht New type of blood cells work as indicators of autoimmunity
14.08.2017 | Instituto de Medicina Molecular

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>