Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Marker may predict response to ipilimumab in advanced melanoma

04.02.2014
Among patients with advanced melanoma, presence of higher levels of the protein vascular endothelial growth factor (VEGF) in blood was associated with poor response to treatment with the immunotherapy ipilimumab, according to a study published in Cancer Immunology Research, a journal of the American Association for Cancer Research.

The study suggests combining immunotherapy with VEGF inhibitors, also known as angiogenesis inhibitors, may be a potential option for these patients.

The immune-checkpoint inhibitor ipilimumab works by boosting the body's immune system to combat melanoma. VEGF is a protein that promotes new blood vessel formation and growth, a process called angiogenesis, thus providing nutrients to the growing tumor. The study found that among patients who had late-stage melanoma, those who had high levels of VEGF in their blood prior to treatment with ipilimumab had decreased clinical benefit, poor overall survival outcomes, and were 60 percent more likely to die of their disease, compared with those who had lower levels of VEGF.

"VEGF is known to suppress the maturation of immune cells and their antitumor responses, and evidence points toward an association between high serum VEGF levels and poor prognosis in melanoma patients," said F. Stephen Hodi, M.D., director of the Melanoma Center at Dana-Farber Cancer Institute, and associate professor of medicine at Harvard Medical School in Boston, Mass. "VEGF has also been shown to be a potential biomarker for other immunotherapies, thus it seemed logical to test the ability of VEGF to predict responses to ipilimumab.

"We found that VEGF may actually hinder some of the effects of the immune-checkpoint inhibitor," Hodi added. "We are beginning to better define predictive biomarkers for immune-checkpoint blockers, specifically ipilimumab. Our study further suggests that there is a potential interaction existing between the biology of angiogenesis and immune-checkpoint blockade."

Hodi and colleagues conducted retrospective analyses of blood samples collected from 176 patients with metastatic melanoma, before and after they were treated with ipilimumab, at Dana-Farber/Harvard Cancer Center and Memorial Sloan-Kettering Cancer Center. Patients were 16 to 91 years old, and the majority of them had stage 4 disease.

VEGF levels in patients' blood ranged from 0.1 to 894.4 picograms per milliliter (pg/ml). The investigators determined 43 pg/ml to be the cutoff value, and evaluated patient responses to treatment as those whose pretreatment VEGF levels were greater than (VEGF-high) or less than (VEGF-low) the cutoff value.

They found that at 24 weeks after starting ipilimumab treatment, 41 percent of the VEGF-low patients experienced clinical benefit, including partial or complete treatment responses; only 23 percent of the VEGF-high patients experienced a clinical benefit.

The median overall survival for VEGF-low patients was 12.9 months, compared with 6.6 months for VEGF-high patients.

The researchers found that while pretreatment VEGF levels had the potential to predict treatment outcomes, changes in VEGF levels during treatment were not linked to treatment outcomes.

"It may be worthwhile to investigate combining immune-checkpoint inhibitors and angiogenesis inhibitors in advanced melanoma with high serum VEGF levels," said Hodi. His team has initiated a randomized clinical trial to test ipilimumab in combination with bevacizumab, an angiogenesis inhibitor, in patients with advanced melanoma.

This study was funded by the National Institutes of Health. Hodi has declared no conflicts of interest.

Follow the AACR on Twitter: @AACR

Follow the AACR on Facebook: http://www.facebook.com/aacr.org

About the American Association for Cancer Research

Founded in 1907, the American Association for Cancer Research (AACR) is the world's oldest and largest professional organization dedicated to advancing cancer research and its mission to prevent and cure cancer. AACR membership includes more than 34,000 laboratory, translational, and clinical researchers; population scientists; other health care professionals; and cancer advocates residing in more than 90 countries. The AACR marshals the full spectrum of expertise of the cancer community to accelerate progress in the prevention, biology, diagnosis, and treatment of cancer by annually convening more than 20 conferences and educational workshops, the largest of which is the AACR Annual Meeting with more than 18,000 attendees. In addition, the AACR publishes eight peer-reviewed scientific journals and a magazine for cancer survivors, patients, and their caregivers. The AACR funds meritorious research directly as well as in cooperation with numerous cancer organizations. As the scientific partner of Stand Up To Cancer, the AACR provides expert peer review, grants administration, and scientific oversight of team science and individual grants in cancer research that have the potential for near-term patient benefit. The AACR actively communicates with legislators and policymakers about the value of cancer research and related biomedical science in saving lives from cancer. For more information about the AACR, visit http://www.AACR.org.

To interview F. Stephen Hodi, contact Teresa Herbert at teresa_herbert@dfci.harvard.edu or 617-632-5653. For other inquiries, contact Jeremy Moore at jeremy.moore@aacr.org or 215-446-7109.

Jeremy Moore | EurekAlert!
Further information:
http://www.aacr.org

Further reports about: AACR Cancer VEGF-high VEGF-low angiogenesis inhibitors blood sample immune cell

More articles from Health and Medicine:

nachricht Discovery of a novel gene for hereditary colon cancer
29.07.2016 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New evidence: How amino acid cysteine combats Huntington's disease
27.07.2016 | Johns Hopkins Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-assembling nano inks form conductive and transparent grids during imprint

Transparent electronics devices are present in today’s thin film displays, solar cells, and touchscreens. The future will bring flexible versions of such devices. Their production requires printable materials that are transparent and remain highly conductive even when deformed. Researchers at INM – Leibniz Institute for New Materials have combined a new self-assembling nano ink with an imprint process to create flexible conductive grids with a resolution below one micrometer.

To print the grids, an ink of gold nanowires is applied to a substrate. A structured stamp is pressed on the substrate and forces the ink into a pattern. “The...

Im Focus: The Glowing Brain

A new Fraunhofer MEVIS method conveys medical interrelationships quickly and intuitively with innovative visualization technology

On the monitor, a brain spins slowly and can be examined from every angle. Suddenly, some sections start glowing, first on the side and then the entire back of...

Im Focus: Newly discovered material property may lead to high temp superconductivity

Researchers at the U.S. Department of Energy's (DOE) Ames Laboratory have discovered an unusual property of purple bronze that may point to new ways to achieve high temperature superconductivity.

While studying purple bronze, a molybdenum oxide, researchers discovered an unconventional charge density wave on its surface.

Im Focus: Mapping electromagnetic waveforms

Munich Physicists have developed a novel electron microscope that can visualize electromagnetic fields oscillating at frequencies of billions of cycles per second.

Temporally varying electromagnetic fields are the driving force behind the whole of electronics. Their polarities can change at mind-bogglingly fast rates, and...

Im Focus: Continental tug-of-war - until the rope snaps

Breakup of continents with two speed: Continents initially stretch very slowly along the future splitting zone, but then move apart very quickly before the onset of rupture. The final speed can be up to 20 times faster than in the first, slow extension phase.phases

Present-day continents were shaped hundreds of millions of years ago as the supercontinent Pangaea broke apart. Derived from Pangaea’s main fragments Gondwana...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2016: 7th Conference on the Art, Technology and Theory of Digital Games

29.07.2016 | Event News

GROWING IN CITIES - Interdisciplinary Perspectives on Urban Gardening

15.07.2016 | Event News

SIGGRAPH2016 Computer Graphics Interactive Techniques, 24-28 July, Anaheim, California

15.07.2016 | Event News

 
Latest News

Vortex laser offers hope for Moore's Law

29.07.2016 | Power and Electrical Engineering

Novel 'repair system' discovered in algae may yield new tools for biotechnology

29.07.2016 | Life Sciences

Clash of Realities 2016: 7th Conference on the Art, Technology and Theory of Digital Games

29.07.2016 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>