Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Marker may predict response to ipilimumab in advanced melanoma

04.02.2014
Among patients with advanced melanoma, presence of higher levels of the protein vascular endothelial growth factor (VEGF) in blood was associated with poor response to treatment with the immunotherapy ipilimumab, according to a study published in Cancer Immunology Research, a journal of the American Association for Cancer Research.

The study suggests combining immunotherapy with VEGF inhibitors, also known as angiogenesis inhibitors, may be a potential option for these patients.

The immune-checkpoint inhibitor ipilimumab works by boosting the body's immune system to combat melanoma. VEGF is a protein that promotes new blood vessel formation and growth, a process called angiogenesis, thus providing nutrients to the growing tumor. The study found that among patients who had late-stage melanoma, those who had high levels of VEGF in their blood prior to treatment with ipilimumab had decreased clinical benefit, poor overall survival outcomes, and were 60 percent more likely to die of their disease, compared with those who had lower levels of VEGF.

"VEGF is known to suppress the maturation of immune cells and their antitumor responses, and evidence points toward an association between high serum VEGF levels and poor prognosis in melanoma patients," said F. Stephen Hodi, M.D., director of the Melanoma Center at Dana-Farber Cancer Institute, and associate professor of medicine at Harvard Medical School in Boston, Mass. "VEGF has also been shown to be a potential biomarker for other immunotherapies, thus it seemed logical to test the ability of VEGF to predict responses to ipilimumab.

"We found that VEGF may actually hinder some of the effects of the immune-checkpoint inhibitor," Hodi added. "We are beginning to better define predictive biomarkers for immune-checkpoint blockers, specifically ipilimumab. Our study further suggests that there is a potential interaction existing between the biology of angiogenesis and immune-checkpoint blockade."

Hodi and colleagues conducted retrospective analyses of blood samples collected from 176 patients with metastatic melanoma, before and after they were treated with ipilimumab, at Dana-Farber/Harvard Cancer Center and Memorial Sloan-Kettering Cancer Center. Patients were 16 to 91 years old, and the majority of them had stage 4 disease.

VEGF levels in patients' blood ranged from 0.1 to 894.4 picograms per milliliter (pg/ml). The investigators determined 43 pg/ml to be the cutoff value, and evaluated patient responses to treatment as those whose pretreatment VEGF levels were greater than (VEGF-high) or less than (VEGF-low) the cutoff value.

They found that at 24 weeks after starting ipilimumab treatment, 41 percent of the VEGF-low patients experienced clinical benefit, including partial or complete treatment responses; only 23 percent of the VEGF-high patients experienced a clinical benefit.

The median overall survival for VEGF-low patients was 12.9 months, compared with 6.6 months for VEGF-high patients.

The researchers found that while pretreatment VEGF levels had the potential to predict treatment outcomes, changes in VEGF levels during treatment were not linked to treatment outcomes.

"It may be worthwhile to investigate combining immune-checkpoint inhibitors and angiogenesis inhibitors in advanced melanoma with high serum VEGF levels," said Hodi. His team has initiated a randomized clinical trial to test ipilimumab in combination with bevacizumab, an angiogenesis inhibitor, in patients with advanced melanoma.

This study was funded by the National Institutes of Health. Hodi has declared no conflicts of interest.

Follow the AACR on Twitter: @AACR

Follow the AACR on Facebook: http://www.facebook.com/aacr.org

About the American Association for Cancer Research

Founded in 1907, the American Association for Cancer Research (AACR) is the world's oldest and largest professional organization dedicated to advancing cancer research and its mission to prevent and cure cancer. AACR membership includes more than 34,000 laboratory, translational, and clinical researchers; population scientists; other health care professionals; and cancer advocates residing in more than 90 countries. The AACR marshals the full spectrum of expertise of the cancer community to accelerate progress in the prevention, biology, diagnosis, and treatment of cancer by annually convening more than 20 conferences and educational workshops, the largest of which is the AACR Annual Meeting with more than 18,000 attendees. In addition, the AACR publishes eight peer-reviewed scientific journals and a magazine for cancer survivors, patients, and their caregivers. The AACR funds meritorious research directly as well as in cooperation with numerous cancer organizations. As the scientific partner of Stand Up To Cancer, the AACR provides expert peer review, grants administration, and scientific oversight of team science and individual grants in cancer research that have the potential for near-term patient benefit. The AACR actively communicates with legislators and policymakers about the value of cancer research and related biomedical science in saving lives from cancer. For more information about the AACR, visit http://www.AACR.org.

To interview F. Stephen Hodi, contact Teresa Herbert at teresa_herbert@dfci.harvard.edu or 617-632-5653. For other inquiries, contact Jeremy Moore at jeremy.moore@aacr.org or 215-446-7109.

Jeremy Moore | EurekAlert!
Further information:
http://www.aacr.org

Further reports about: AACR Cancer VEGF-high VEGF-low angiogenesis inhibitors blood sample immune cell

More articles from Health and Medicine:

nachricht Cystic fibrosis alters the structure of mucus in airways
29.06.2017 | University of Iowa Health Care

nachricht Mice provide insight into genetics of autism spectrum disorders
28.06.2017 | University of California - Davis

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making Waves

Computer scientists use wave packet theory to develop realistic, detailed water wave simulations in real time. Their results will be presented at this year’s SIGGRAPH conference.

Think about the last time you were at a lake, river, or the ocean. Remember the ripples of the water, the waves crashing against the rocks, the wake following...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Nanostructures taste the rainbow

29.06.2017 | Physics and Astronomy

New technique unveils 'matrix' inside tissues and tumors

29.06.2017 | Life Sciences

Cystic fibrosis alters the structure of mucus in airways

29.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>