Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Marker Distinguishes More-Aggressive From Less-Aggressive Forms Of Chronic Leukemia

13.06.2012
People newly diagnosed with chronic leukemia must often wait to learn if they have a faster- or slower-progressing form of the disease.

This study identified a molecular marker that quickly helps to distinguish which form a patients has.

The findings could enable patients with aggressive disease to start treatment sooner.

Researchers have identified a prognostic marker in the most common form of chronic leukemia that can help to distinguish which patients should start treatment quickly from those who can safely delay treatment, perhaps for years.

The study, led by researchers at the Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute (OSUCCC – James), focused on chronic lymphocytic leukemia (CLL), a malignancy expected to occur in 16,000 Americans this year and cause 4,600 deaths.

The researchers examined a gene called ZAP-70 in CLL cells for a chemical change called methylation. They found that when the gene in leukemia cells is methylated, patients are likely to have the slow-progressing form of CLL, and when the ZAP-70 gene is unmethylated, patients are likely to have aggressive disease and should consider beginning treatment immediately.

Currently, doctors must simply observe newly diagnosed patients to determine which type of CLL they have. This can delay the start of treatment in patients with aggressive disease, or it can lead to treating patients who don’t yet require it.

The findings are published in the Journal of Clinical Oncology.

“This study demonstrates that ZAP-70 methylation status is a highly predictive, reproducible biomarker of poor prognosis in this disease, and a clinically useful prognostic test for CLL,” says principal investigator Dr. John Byrd, a CLL specialist and professor of Medicine, of Medicinal Chemistry and of Veterinary Biosciences at the OSUCCC – James.

Currently, the presence of mutations in a gene called IGVH (immunoglobulin heavy chain variable region gene), and the amount of protein produced by the ZAP-70 gene in CLL cells are sometimes used to predict prognosis and response to treatment in people with this disease, “but these assays are expensive and difficult to perform,” says coauthor and researcher Dr. David Lucas, research assistant professor and CLL specialist at the OSUCCC – James.

“In all cells, some areas of DNA undergo methylation, which controls how that DNA is used,” Lucas says. “In cancer cells, the pattern of DNA methylation is often different from that of healthy cells, and this influences how much protein is produced by ZAP-70 and other genes.”

Because the protein produced by the ZAP-70 gene is often present at different levels in leukemia cells, Byrd, Lucas and their colleagues hypothesized that changes in ZAP-70 methylation status could explain decreases in the gene’s expression and a more favorable clinical outcome.

The researchers examined CLL cells from 247 patients obtained through four independent clinical trials. Project co-leader, Dr. Christoph Plass, of the Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center in Heidelberg, Germany, used a new mass spectroscopy-based technique to assess DNA methylation of the ZAP-70 regulatory region.

Funding from the German Research Society, NIH/National Cancer Institute (grants CA101956, CA140158, CA95426, CA81534, 1K12CA133250), The Leukemia & Lymphoma Society, The Harry Mangurian Foundation, and The D. Warren Brown Foundation supported this research.

Other researchers involved in this study were Amy S. Ruppert, Lianbo Yu, Nyla A. Heerema and Guido Marcucci of Ohio State University; Rainer Claus, Manuela Zucknick and Christopher C. Oakes of the German Cancer Research Center, Heidelberg; Stephan Stilgenbauer, Daniel Mertens, Andreas Bühler and Hartmut Döhner of the University of Ulm, Germany; Richard A. Larson of the University of Chicago; Neil E. Kay and Diane F. Jelinek of Mayo Clinic; Thomas J. Kipps and Laura Z. Rassenti of the University of California, San Diego; and John G. Gribben of the University of London, United Kingdom.

The Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute strives to create a cancer-free world by integrating scientific research with excellence in education and patient-centered care, a strategy that leads to better methods of prevention, detection and treatment. Ohio State is one of only 41 National Cancer Institute (NCI)-designated Comprehensive Cancer Centers and one of only seven centers funded by the NCI to conduct both phase I and phase II clinical trials. The NCI recently rated Ohio State’s cancer program as “exceptional,” the highest rating given by NCI survey teams. As the cancer program’s 210-bed adult patient-care component, The James is a “Top Hospital” as named by the Leapfrog Group and one of the top 20 cancer hospitals in the nation as ranked by U.S.News & World Report.

Contact: Darrell E. Ward, Medical Center Public Affairs and Media Relations,
614-293-3737, or Darrell.Ward@osumc.edu

Darrell E. Ward | EurekAlert!
Further information:
http://www.osumc.edu

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>