Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Marker Distinguishes More-Aggressive From Less-Aggressive Forms Of Chronic Leukemia

13.06.2012
People newly diagnosed with chronic leukemia must often wait to learn if they have a faster- or slower-progressing form of the disease.

This study identified a molecular marker that quickly helps to distinguish which form a patients has.

The findings could enable patients with aggressive disease to start treatment sooner.

Researchers have identified a prognostic marker in the most common form of chronic leukemia that can help to distinguish which patients should start treatment quickly from those who can safely delay treatment, perhaps for years.

The study, led by researchers at the Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute (OSUCCC – James), focused on chronic lymphocytic leukemia (CLL), a malignancy expected to occur in 16,000 Americans this year and cause 4,600 deaths.

The researchers examined a gene called ZAP-70 in CLL cells for a chemical change called methylation. They found that when the gene in leukemia cells is methylated, patients are likely to have the slow-progressing form of CLL, and when the ZAP-70 gene is unmethylated, patients are likely to have aggressive disease and should consider beginning treatment immediately.

Currently, doctors must simply observe newly diagnosed patients to determine which type of CLL they have. This can delay the start of treatment in patients with aggressive disease, or it can lead to treating patients who don’t yet require it.

The findings are published in the Journal of Clinical Oncology.

“This study demonstrates that ZAP-70 methylation status is a highly predictive, reproducible biomarker of poor prognosis in this disease, and a clinically useful prognostic test for CLL,” says principal investigator Dr. John Byrd, a CLL specialist and professor of Medicine, of Medicinal Chemistry and of Veterinary Biosciences at the OSUCCC – James.

Currently, the presence of mutations in a gene called IGVH (immunoglobulin heavy chain variable region gene), and the amount of protein produced by the ZAP-70 gene in CLL cells are sometimes used to predict prognosis and response to treatment in people with this disease, “but these assays are expensive and difficult to perform,” says coauthor and researcher Dr. David Lucas, research assistant professor and CLL specialist at the OSUCCC – James.

“In all cells, some areas of DNA undergo methylation, which controls how that DNA is used,” Lucas says. “In cancer cells, the pattern of DNA methylation is often different from that of healthy cells, and this influences how much protein is produced by ZAP-70 and other genes.”

Because the protein produced by the ZAP-70 gene is often present at different levels in leukemia cells, Byrd, Lucas and their colleagues hypothesized that changes in ZAP-70 methylation status could explain decreases in the gene’s expression and a more favorable clinical outcome.

The researchers examined CLL cells from 247 patients obtained through four independent clinical trials. Project co-leader, Dr. Christoph Plass, of the Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center in Heidelberg, Germany, used a new mass spectroscopy-based technique to assess DNA methylation of the ZAP-70 regulatory region.

Funding from the German Research Society, NIH/National Cancer Institute (grants CA101956, CA140158, CA95426, CA81534, 1K12CA133250), The Leukemia & Lymphoma Society, The Harry Mangurian Foundation, and The D. Warren Brown Foundation supported this research.

Other researchers involved in this study were Amy S. Ruppert, Lianbo Yu, Nyla A. Heerema and Guido Marcucci of Ohio State University; Rainer Claus, Manuela Zucknick and Christopher C. Oakes of the German Cancer Research Center, Heidelberg; Stephan Stilgenbauer, Daniel Mertens, Andreas Bühler and Hartmut Döhner of the University of Ulm, Germany; Richard A. Larson of the University of Chicago; Neil E. Kay and Diane F. Jelinek of Mayo Clinic; Thomas J. Kipps and Laura Z. Rassenti of the University of California, San Diego; and John G. Gribben of the University of London, United Kingdom.

The Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute strives to create a cancer-free world by integrating scientific research with excellence in education and patient-centered care, a strategy that leads to better methods of prevention, detection and treatment. Ohio State is one of only 41 National Cancer Institute (NCI)-designated Comprehensive Cancer Centers and one of only seven centers funded by the NCI to conduct both phase I and phase II clinical trials. The NCI recently rated Ohio State’s cancer program as “exceptional,” the highest rating given by NCI survey teams. As the cancer program’s 210-bed adult patient-care component, The James is a “Top Hospital” as named by the Leapfrog Group and one of the top 20 cancer hospitals in the nation as ranked by U.S.News & World Report.

Contact: Darrell E. Ward, Medical Center Public Affairs and Media Relations,
614-293-3737, or Darrell.Ward@osumc.edu

Darrell E. Ward | EurekAlert!
Further information:
http://www.osumc.edu

More articles from Health and Medicine:

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

nachricht Stem cell transplants: activating signal paths may protect from graft-versus-host disease
20.04.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Molecular libraries for organic light-emitting diodes

24.04.2017 | Life Sciences

Research sheds new light on forces that threaten sensitive coastlines

24.04.2017 | Earth Sciences

Making lightweight construction suitable for series production

24.04.2017 | Machine Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>