Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Map of your brain may reveal early mental illness

13.07.2009
Topographical brain maps are new frontier to catch early schizophrenia

John Csernansky wants to take your measurements. Not the circumference of your chest, waist and hips. No, this doctor wants to stretch a tape measure around your hippocampus, thalamus and prefrontal cortex.

OK, maybe not literally a tape measure, but he does want to chart the dimensions of the many structures in the human brain. From those measurements -- obtained from an MRI scan -- Csernansky will produce a map of the unique dips, swells and crevasses of the brains of individuals that he hopes will provide the first scientific tool for early and more definite diagnosis of mental disorders such as schizophrenia. Diagnosing the beginning stage of mental disorders remains elusive, although this when they are most treatable.

The shapes and measurements of brain structures can reveal how they function. Thus, Csernansky hopes his brain maps will reveal how the brains of humans with and without major mental disorders differ from each other and the time frame over which those differences develop.

Diagnosing psychiatric disorders currently is more art than science, said Csernansky, M.D., the chair of psychiatry and behavioral sciences at the Northwestern University Feinberg School of Medicine and of psychiatry at the Stone Institute of Psychiatry at Northwestern Memorial Hospital. Unlike a heart attack, for example, which can be identified with an EKG and a blood test for cardiac enzymes, psychiatric illness is diagnosed by asking a patient about his symptoms and history.

"That's akin to diagnosing a heart attack by asking people when their pain came and where it was located," Csernansky said. "We would like to have the same kinds of tools that every other field of medicine has."

To that end, he is heading a National Institutes of Mental Health study to measure the differences between the structure of the schizophrenic and normal brain to be able to more quickly identify schizophrenia in its early stages and see if the medications used to treat the illness halt its devastating advance.

Schizophrenia usually starts in the late teens or early 20s and affects about 1 percent of the population. If the disease is caught early and treated with the most effective antipsychotic medications and psychotherapy, the patient has the best chance for recovery.

Current treatments are evaluated on whether the patients' symptoms improve over several months. Csernansky, however, wants to take a longer and broader view.

"What we want to know is whether a few years later are you more able to work, are you better able to return to school?" he said. "If you take these medicines for years at a time, is your life better than if you had not taken them? We want to understand the effects of the medicines we give on the biological progression of the disease. We think that's what ultimately determines how well someone does."

Psychotic and mood disorders are life-long illnesses and require management throughout a person's life.

Csernansky is recruiting 100 new subjects, half with early-stage schizophrenia and half who are healthy, to map their brain topography and compare the differences and changes over two years.

"The brain is very plastic and is constantly remodeling itself. Any changes we see in a disease has to be compared in a background of normal changes of brain structures," said Csernansky, who also is the Lizzie Gilman Professor of Psychiatry and Behavioral Sciences.

He said a brain map of schizophrenia would enable doctors to make the diagnosis with more confidence as well as catch it earlier.

"Like every other illness, psychiatric illnesses don't blossom in their full form overnight. They come on gradually," he said. "You don't need a biomarker to tell you that you have breast cancer, if you can feel a tumor that is the size of a golf ball. But who wants to discover an illness that advanced? A biomarker of the schizophrenic brain structure would help us define it, especially in cases where the symptoms are mild or fleeting."

In the past, comparing MRI brain maps was done painstakingly by hand. A technician used a light pen and attempted to trace and manually measure the boundaries of structures in the brain.

"It was very laborious and you had to have an expert in your laboratory," Csernansky explained. Now he is teaching computers to do the work, speeding the process and enhancing accuracy.

Csernansky's previous research has already shown that the brains of schizophrenic patients have abnormalities in the shape and asymmetry of the hippocampus, a part of the brain that is critical to spatial learning and awareness, navigation and the memory of events.

"People with schizophrenia also have problems with interpretation, attention and controls and thought and memory. So the thalamus is another natural structure to study," said Lei Wang, assistant professor of psychiatry and behavioral sciences, and of radiology, at Northwestern's Feinberg School. Wang works with Csernansky on brain mapping.

Csernansky says, "Understanding what changes in brain structure occur very early in the course of schizophrenia and how medication may or may not affect these structures as time goes by will help us reduce the uncertainty of psychiatric diagnosis and improve the selection of treatments."

Marla Paul | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>