Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Many older people have mutations linked to leukemia, lymphoma in their blood cells


At least 2 percent of people over age 40 and 5 percent of people over 70 have mutations linked to leukemia and lymphoma in their blood cells, according to new research at Washington University School of Medicine in St. Louis.

Mutations in the body's cells randomly accumulate as part of the aging process, and most are harmless. For some people, genetic changes in blood cells can develop in genes that play roles in initiating leukemia and lymphoma even though such people don't have the blood cancers, the scientists report Oct. 19 in Nature Medicine.

Li Ding, PhD, and colleagues at Washington University's Genome Institute found that many older people have mutations linked to leukemia and lymphoma in their blood cells.

Credit: Washington University in St. Louis

The findings, based on blood samples from nearly 3,000 patients, don't mean that people with these genetic mutations are destined to develop a blood cancer. In fact, the vast majority of them won't as the incidence of blood cancers such as leukemia or lymphoma is less than 0.1 percent among the elderly.

"But it's quite striking how many people over age 70 have these mutations," said senior author Li Ding, PhD, of The Genome Institute at Washington University. "The power of this study lies in the large number of people we screened. We don't yet know whether having one of these mutations causes a higher than normal risk of developing blood cancers. More research would be required to better understand that risk."

The researchers analyzed blood samples from people enrolled in The Cancer Genome Atlas project, a massive endeavor funded by the National Cancer Institute and the National Human Genome Research Institute at the National Institutes of Health (NIH). The effort involves cataloguing the genetic errors involved in more than 20 types of cancers.

The patients whose blood was analyzed for the current study had been diagnosed with cancer but were not known to have leukemia, lymphoma or a blood disease. They ranged in age from 10 to 90 at the time of diagnosis and had donated blood and tumor samples before starting cancer treatment. Therefore, any mutations identified by the researchers would not have been associated with chemotherapy or radiation therapy, which can damage cells' DNA.

The researchers, including Genome Institute scientists Mingchao Xie, Charles Lu, PhD, and Jiayin Wang, PhD, zeroed in on mutations that were present in the blood but not in tumor samples from the same patients. Such genetic changes in the blood would be associated with changes in stem cells that develop into blood cells, but not to the same patient's cancer.

They looked closely at 556 known cancer genes. In 341 patients ages 40-49, fewer than 1 percent had mutations in 19 leukemia- or lymphoma-related genes. But among 475 people ages 70-79, over 5 percent did. And over 6 percent of the 132 people ages 80-89 had mutations in these genes.

The researchers noted that nine of the 19 genes were mutated repeatedly, an indicator that the changes drive or initiate the expansion of blood cells with these mutations.

This expansion of cells is clearly not leukemia or lymphoma, the researchers said. It may be a precursor to blood cancers in a small subset of patients, but the study was not designed to predict the future risk of developing these diseases.

The current study likely underestimates the percentage of people with mutations in leukemia and lymphoma genes because the researchers only were able to identify small mutations, not large structural variations or the insertions and deletions of chunks of genetic material.

Still, it would be premature for people to undergo genetic testing to see if they have mutations linked to leukemia and lymphoma as a means to predict their risk of blood cancers.

"We would not want anyone to think they should be screened for these mutations to understand their risk of leukemia or lymphoma," said co-author and leukemia scientist Timothy Ley, MD, the Lewis T. and Rosalind B. Apple Professor of Oncology. "The ability to understand how mutations in these genes increase a person's risk of blood cancers is a long way off, and genetic testing would be of no benefit at this time."

If the researchers repeated the study in tens of thousands of patients and tracked the development of mutations over time, they could more accurately identify the risk of individual mutations or combinations of mutations for the development of leukemia and lymphoma. Such a study is intriguing to contemplate but would take years to complete and require considerable financial resources, Ding said.


The research is funded by the National Cancer Institute and the National Human Genome Research Institute at the National Institutes of Health (NIH). Grant numbers R01CA180006, PO1CA101937, U54HG003079 and U01HG006517.

Xie M, Lu C, Wang J, McLellan MD, Johnson KJ, Wendl MC, McMichael JF, Schmidt HK, Yellapantula V, Miller CA, Ozenberger BA, Welch JS, Link DC, Walter MJ, Mardis ER, Dipersio JF, Chen F, Wilson RK, Ley, TJ and Ding L. Age-related cancer mutations associated with clonal hematopoetic expansion. Nature Medicine, advance online publication Oct. 19. 2014.

Washington University School of Medicine's 2,100 employed and volunteer faculty physicians also are the medical staff of Barnes-Jewish and St. Louis Children's hospitals. The School of Medicine is one of the leading medical research, teaching and patient-care institutions in the nation, currently ranked sixth in the nation by U.S. News & World Report. Through its affiliations with Barnes-Jewish and St. Louis Children's hospitals, the School of Medicine is linked to BJC HealthCare.

Caroline Arbanas | Eurek Alert!
Further information:

More articles from Health and Medicine:

nachricht Advanced analysis of brain structure shape may track progression to Alzheimer's disease
26.10.2016 | Massachusetts General Hospital

nachricht Indian roadside refuse fires produce toxic rainbow
26.10.2016 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Steering a fusion plasma toward stability

28.10.2016 | Power and Electrical Engineering

Bioluminescent sensor causes brain cells to glow in the dark

28.10.2016 | Life Sciences

Activation of 2 genes linked to development of atherosclerosis

28.10.2016 | Life Sciences

More VideoLinks >>>