Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Mammalian heart regenerative capacity depends on severity of injury


Full recovery and normal function restored in mouse models following mild injury

A new study by researchers at Children's Hospital Los Angeles has shown that neonatal mouse hearts have varying regenerative capacities depending upon the severity of injury. Using cryoinjury - damaging the heart through exposure to extreme cold in order to mimic cellular injury caused by myocardial infarction - investigators found that neonatal mouse hearts can fully recover normal function following a mild injury, though fail to regenerate after a severe injury.

This is a neonatal mouse heart showing basal level of proliferating cardiomyocytes. (Red- cardiomyocytes; Green- proliferating cardiomyocytes; RV-right ventricle; LV-left ventricle.)

Credit: The Saban Research Institute of Children's Hospital Los Angeles

Published online by the journal Developmental Biology, the study suggests that cardiac regeneration strategies should be based on the type and severity of heart injury.

"Using models such as zebrafish and neonatal mice that regenerate their hearts naturally, we can begin to identify important molecules that enhance heart repair," said Ellen Lien, PhD, of The Saban Research Institute of Children's Hospital Los Angeles. Lien, who was senior author on the paper, is also an assistant professor at the Keck School of Medicine of the University of Southern California.

Newborn mice have shown the capacity for heart regeneration, but it is rapidly lost by seven days after birth. Approaches to extend this regenerative capacity in a mammalian model, from the neonatal period to the juvenile or adult period, could help identify new treatment options for humans.

Acute myocardial infarction, commonly known as a heart attack, can be classified according to the extent of damage to the heart muscle. Severe, or transmural injury, is associated with a blood supply blockage to the full thickness of the heart. Non-transmural injury indicates a blockage that penetrates only partially through the heart muscle. The investigators were able to develop models for both types of injury.

In addition to differences in regenerative capacity, the investigators also found an indicator of tissue fibrosis or "scarring", profibrotic marker PAI-1, was markedly elevated only after transmural injury. In both models post-injury, the cells that form heart muscle, cardiomyocytes, did not increase significantly. However, responses to cardiac injury repair in the outer layer of the heart (epicardium) and blood vessels (revascularization) - were present.

"If we can figure out how to activate this youthful type of myocardial regeneration program in humans, it will be a major clinical breakthrough," said David Warburton, OBE, DSc, MD, director of Developmental Biology and Regenerative Medicine at The Saban Research Institute of CHLA. Warburton is also a professor at the Keck School of Medicine of USC and was co-author on the paper.

Additional contributors include Ali Darehzereshki, Nicole Rubin, Laurent Gamba, Jieun Kim, James Fraser, Ying Huang, Joshua Billings, John Wood, David Warburton, The Saban Research Institute of CHLA; Robabeh Mohammadzadeh, Broad Center of Stem Cell and Regenerative Medicine, USC; Vesa Kaartinen, University of Michigan. Funding was provided in part by the National Heart, Lung and Blood Institute R01HL096121, The Saban Research Institute Career Development Award, and the California Institute of Regenerative Medicine (CIRM) postdoctoral fellowship TG2-01168.

Link to study:

About Children's Hospital Los Angeles

Children's Hospital Los Angeles has been named the best children's hospital on the West Coast and among the top five in the nation for clinical excellence with its selection to the prestigious U.S. News & World Report Honor Roll. Children's Hospital is home to The Saban Research Institute, one of the largest and most productive pediatric research facilities in the United States. Children's Hospital is also one of America's premier teaching hospitals through its affiliation since 1932 with the Keck School of Medicine of the University of Southern California.

For more information, visit Follow us on our blog

Jennifer Jing | EurekAlert!

Further reports about: Biology Medicine heart muscle myocardial infarction neonatal regenerative

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>