Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Malign environmental combination favors schizophrenia

01.03.2013
The interplay between an infection during pregnancy and stress in puberty plays a key role in the development of schizophrenia, as behaviourists from ETH Zurich demonstrate in a mouse model. However, there is no need to panic.

Around one per cent of the population suffers from schizophrenia, a serious mental disorder that usually does not develop until adulthood and is incurable. Psychiatrists and neuroscientsist have long suspected that adverse enviromental factors may play an important role in the development of schizophrenia.

Prenatal infections such as toxoplasmosis or influenza, psychological, stress or family history have all come into question as risk factors. Nevertheless, until now researchers were unable to identify the interplay of the individual factors linked to this serious mental disease.

However, a research group headed by Urs Meyer, a senior scientist at the Laboratory of Physiology & Behaviour at ETH Zurich, has now made a breakthrough: for the first time, they were able to find clear evidence that the combination of two environmental factors contributes significantly to the development of schizophrenia-relevant brain changes and at which stages in a person's life they need to come into play for the disorder to break out. The researchers developed a special mouse model, with which they were able to simulate the processes in humans virtually in fast forward. The study has just been published in the journal Science.

Interplay between infection and stress

The first negative environmental influence that favours schizophrenia is a viral infection of the mother during the first half of the pregnancy. If a child with such a prenatal infectious history is also exposed to major stress during puberty, the probability that he or she will suffer from schizophrenia later increases markedly. Hence, the mental disorder needs the combination of these two negative environmental influences to develop. "Only one of the factors – namely an infection or stress – is not enough to develop schizophrenia," underscores Meyer.

The infection during pregnancy lays the foundation for stress to "take hold" in puberty. After all, the mother's infection activates certain immune cells of the central nervous system in the brain of the foetus: microglial cells, which produce cytotoxins that alter the brain development of the unborn child.

Mouse model provides important clue

Once the mother's infection subsides, the microglial cells lie dormant but have developed a "memory". If the adolescent suffers severe, chronic stress during puberty, such as sexual abuse or physical violence, the microglial cells awake and induce changes in certain brain regions through this adverse postnatal stimulus. Ultimately, these neuroimmunological changes do not have a devastating impact until adulthood. The brain seems to react particularly sensitively to negative influences in puberty as this is the period during which it matures. "Evidently, something goes wrong with the 'hardware' that can no longer be healed," says Sandra Giovanoli, who, as a doctoral student under Urs Meyer, did the lion's share of the work on this study.

The researchers achieved their ground-breaking results based on sophisticated mouse models, using a special substance to trigger an infection in pregnant mouse mothers to provoke an immune response. Thirty to forty days after birth – the age at which the animals become sexually mature, which is the equivalent of puberty – the young animals were exposed to five different stressors which the mice were not expecting. This stress is the equivalent of chronic psychological stress in humans.

Diminished filter function

Afterwards, the researchers tested the animals' behaviour directly after puberty and in adulthood,. As a control, the scientists also studied mice with either an infection or stress, as well as animals that were not exposed to either of the two risk factors.

When the researchers examined the behaviour of the animals directly after puberty, they were not able to detect any abnormalities. In adulthood, however, the mice that had both the infection and stress behaved abnormally. The behaviour patterns observed in the animals are comparable to those of schizophrenic humans. For instance, the rodents were less receptive to auditory stimuli, which went hand in hand with a diminished filter function in the brain. The mice also responded far more strongly to psychoactive substances such as amphetamine.

Environmental influences more significant again

"Our result is extremely relevant for human epidemiology," says Meyer. Even more importance will be attached to environmental influences again in the consideration of human disorders – especially in neuropsychology. "It isn't all genetics after all," he says.

Although certain symptoms of schizophrenia can be treated with medication, the disease is not curable. However, the study provides hope that we will at least be able to take preventative action against the disorder in high-risk people. The study is a key foundation upon which other branches of research can build.

The ETH Zurich researchers also stress that the results of their work are no reason for pregnant women to panic. Many expecting mothers get infections such as herpes, a cold or the flu. And every child goes through stress during puberty, whether it be through bullying at school or quarrelling at home. "A lot has to come together in the 'right' time window for the probability of developing schizophrenia to be high," says Giovanoli. Ultimately, other factors are also involved in the progress of the disease. Genetics, for instance, which was not taken into consideration in the study, can also play a role. But unlike genes, certain environmental influences can be changed, adds the doctoral student; how one responds to and copes with stress is learnable.

Urs Meyer | EurekAlert!
Further information:
http://www.ethz.ch

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>