Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Malaria-transmitting mosquito evolving, NIH grantees find

22.10.2010
WHAT: Researchers funded by the National Institutes of Health have found that the major malaria-transmitting mosquito species, Anopheles gambiae, is evolving into two separate species with different traits, a development that could both complicate malaria control efforts and potentially require new disease prevention methods. Their findings were published in back-to-back articles in the October 22 issue of the journal Science.

A. gambiae is the most common vector of human malaria in sub-Saharan Africa, where rates of the disease are highest. The researchers compared the genomes of two emerging species, dubbed M and S. Given that M and S appear to be physically indistinguishable and interbreed often, they were unexpectedly different at the DNA level.

They also were found to behave differently and thrive in different habitats. For example, in the absence of predators, S mosquitoes outcompeted M mosquitoes, but the outcome was reversed when predators were present.

As these two emerging species of mosquito evolve to develop new traits and behaviors, changes in disease transmission could result, the authors say. This could complicate malaria control efforts, which currently are based on the mosquitoes' patterns of behavior and vulnerability to insecticides.

Future research will further investigate these emerging species, exploring how they compete with one another in various habitats and the molecular basis of their evolution. The results will be used to refine existing malaria interventions and inform the development of new disease prevention strategies.

The research was supported by the National Institute of Allergy and Infectious Diseases and the National Human Genome Research Institute, both components of NIH. More information about NIAID research on malaria and other vector-borne diseases is available at the NIAID Malaria (http://www.niaid.nih.gov/topics/malaria/Pages/default.aspx) and the NIAID Vector Biology Web portals (http://www.niaid.nih.gov/topics/vector/pages/default.aspx).

ARTICLES: DE Neafsey et al. Complex gene-flow boundaries among vector mosquito populations. Science. DOI: 10.1126/science.1193036 (2010).

MKN Lawniczak et al. Widespread divergence between incipient Anopheles gambiae species revealed by whole genome sequences. Science. DOI: 10.1126/science.1195755 (2010).

WHO: Adriana Costero-Saint Denis, Ph.D., of the Parasitology and International Programs Branch, NIAID, is available to comment on these articles.

CONTACT: To schedule interviews, please contact Nalini Padmanabhan, 301-402-1663, niaidnews@niaid.nih.gov.

NIAID conducts and supports research—at NIH, throughout the United States, and worldwide—to study the causes of infectious and immune-mediated diseases, and to develop better means of preventing, diagnosing and treating these illnesses. News releases, fact sheets and other NIAID-related materials are available on the NIAID Web site at http://www.niaid.nih.gov.

The National Institutes of Health (NIH)—The Nation's Medical Research Agency—includes 27 Institutes and Centers and is a component of the U. S. Department of Health and Human Services. It is the primary federal agency for conducting and supporting basic, clinical and translational medical research, and it investigates the causes, treatments and cures for both common and rare diseases.

Nalini Padmanabhan | EurekAlert!
Further information:
http://www.niaid.nih.gov
http://www.nih.gov

More articles from Health and Medicine:

nachricht Nanoparticles as a Solution against Antibiotic Resistance?
15.12.2017 | Friedrich-Schiller-Universität Jena

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Diamond Lenses and Space Lasers at Photonics West

15.12.2017 | Trade Fair News

A better way to weigh millions of solitary stars

15.12.2017 | Physics and Astronomy

New epidemic management system combats monkeypox outbreak in Nigeria

15.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>