Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Malaria parasites use camouflage to trick immune defences of pregnant women

12.07.2011
Researchers from Rigshospitalet – Copenhagen University Hospital – and the University of Copenhagen have discovered why malaria parasites are able to hide from the immune defences of expectant mothers, allowing the parasite to attack the placenta. The discovery is an important part of the efforts researchers are making to understand this frequently fatal disease and to develop a vaccine.

Staff member at CMP. Photo: Lars Hviid"We have found one likely explanation for the length of time it takes for the expectant mother's immune defences to discover the infection in the placenta," says Lea Barfod, MSc, who is working with Professor Lars Hviid at the Centre for Medical Parasitology, University of Copenhagen.

"The parasites are able to assume a camouflage that prevents their recognition by the immune system antibodies which would otherwise combat them. So although the immune system has all the weapons it needs to fight the infection of the placenta, these weapons are ineffectual simply because the enemy is hard to spot. Ironically the camouflage also consists of antibodies, but of a type that does not help to fight infection."

The malaria parasite at war with the immune system

One human being in twelve is infected with malaria. That means 500 million people are carrying the tiny parasite, and it kills a million of them a year. The disease costs so many lives because the parasite constantly outmanoeuvres the human immune system. It starts by hiding in the red blood cells. The immune system does not bother with these as the spleen usually filters defective blood cells.

To avoid this filter, the parasite ejects a protein hook which attaches to the inner wall of the blood vessel, and even if the immune system antibodies destroy one such hook, the parasite has more than sixty in its arsenal. One of them has evolved specially to attach to the placenta. While the war is being waged the parasite propagates and infects more and more red blood cells, which are normally used for transporting nutrients and oxygen around the body.

Fighting from house to house

"In an advanced version of hide-and-seek the parasites keep looking for new ways of preventing the antibodies from recognising them. It is a kind of urban guerrilla war in which the fighting is conducted from house to house," says Lars Hviid.

"One example is the ability of the parasites to hide in the placenta. The first time an African woman conceives her placenta provides a new opportunity for the parasite to hide: a new house, so to speak, and in a way that prevents discovery by the immune system. It takes time for the immune defences to react to the new threat, and meanwhile the camouflaged parasite harms the woman and her unborn child."

The researchers are now going to study whether the malaria parasite also uses its camouflage at other stages of an infection.

"Perhaps it is not only the parasites in the placenta that are capable of hiding like this," Lars Hviid says.

"It takes the body a surprisingly long time to develop protection from Malaria, and perhaps the trick we have just discovered is part of the explanation. It is important for us to find out if this is the case in order to help us to understand malaria in general, but also to help us in our efforts to develop a vaccination. We have plenty of work to be going on with," Lars Hviid concludes.

Lea Barfod and Lars Hviid's discovery has just been published in the Proceedings of the National Academy of Sciences of the United States of America.

Professor Lars Hviid | EurekAlert!
Further information:
http://www.ku.dk

More articles from Health and Medicine:

nachricht Nanoparticles as a Solution against Antibiotic Resistance?
15.12.2017 | Friedrich-Schiller-Universität Jena

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>