Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Major breakthrough in the diagnosis of parasitic diseases

28.04.2010
Chagas disease is one of the most deadly parasitic diseases in the world. It affects more than 10 million people, primarily in the Americas. In South America alone it kills 50 000 people each year. A reliable and rapid diagnosis is the key in the battle against infection but until now, this has been next to impossible. Dr. Momar Ndao and his team at the Research Institute of the MUHC have developed a new diagnostic approach that will help in the fight against Chagas disease.Their results were recently published in the Journal of Clinical Microbiology.

Endemic in South America, the American trypanosomiasis, or Chagas disease, is transmitted to humans via the parasite Trypanosoma cruzi. The disease is usually transmitted through the bite of an infected insect or ‘kissing bug’. The symptoms are variable, but as the disease progresses serious chronic symptoms can appear, such as heart disease and malformation of the intestines. Most people affected may remain without symptoms for years, making diagnosis difficult.

Chagas disease is also transmitted from mother to unborn child and can be passed on for as many as four generations without symptoms. "In other words, a person born in North America by a mother who was infected can transmit the disease to offspring without having traveled," says Dr. Ndao, Laboratory Director of the National Reference Center for Parasitology (NRCP) of the Research Institute. There is an urgent need for action on this disease as it is under-diagnosed and there is no effective treatment.

This situation raises some serious public health concerns with respect to blood transfusions and organ transplants, because many people may be silent carriers of the disease. "The aim of our study was to find new approaches to improve reliability of diagnosis and screening of blood banks," says Dr. Ndao, who is also a researcher at the Centre for Host Parasite Interactions at McGill University.

The researchers have validated a reliable screening technique using mass spectrometry technology that identifies common biological markers - or biomarkers - between the interaction of host (humans) and the parasite. They found that in 99% of cases, the parasites left very specific markers. 'It's as if the parasite left his own signature in the infected person, which could help to diagnose Chagas disease” says Dr. Ndao.

"The use of these biomarkers is a revolution in diagnostic confidence and protection of possible contamination of blood banks,” says Dr. Ndao “Moreover, these biomarkers have potential therapeutic effects of paving the way for the development of vaccines for Chagas, which could be extended to other parasitic diseases.”

Funding
This study was made possible by grants from the Canadian Institutes of Health Research (CIHR) and by McGill University.

About the Study

The article “Identification of Novel Diagnostic Serum Biomarkers for Chagas’ Disease in Asymptomatic Subjects by Mass Spectrometric Profiling,” published in The Journal of Clinical Microbiology, was co-authored by Momar Ndao and Brian J. Ward from the RI of the MUHC and McGill University; Terry W. Spithill from McGill University and Charles Stuart University and Cynthia Santamaria from McGill University; Rebecca Caffrey from University of California, Berkeley; Hongshan Li from High School of Business, California; Vladimir N. Podust from Vermillion Inc., California, Regis Perichon from Diagnostic Biomarker Evaluation Group Ortho-Clinical Diagnostics, New Jersey; Alberto Ache from Ministerio de Salud y Desarrollo Social, Caracas, Venezuela; Mark Duncan, University of Colorado and Malcolm R. Powell from Western Carolina University and Universidad del Valle Guatemala.

Julie Robert | EurekAlert!
Further information:
http://www.muhc.mcgill.ca

Further reports about: Biomarker Chagas Chagas disease MUHC biological marker microbiology

More articles from Health and Medicine:

nachricht Routing gene therapy directly into the brain
07.12.2017 | Boston Children's Hospital

nachricht New Hope for Cancer Therapies: Targeted Monitoring may help Improve Tumor Treatment
01.12.2017 | Berliner Institut für Gesundheitsforschung / Berlin Institute of Health (BIH)

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>