Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Major breakthrough in the diagnosis of parasitic diseases

28.04.2010
Chagas disease is one of the most deadly parasitic diseases in the world. It affects more than 10 million people, primarily in the Americas. In South America alone it kills 50 000 people each year. A reliable and rapid diagnosis is the key in the battle against infection but until now, this has been next to impossible. Dr. Momar Ndao and his team at the Research Institute of the MUHC have developed a new diagnostic approach that will help in the fight against Chagas disease.Their results were recently published in the Journal of Clinical Microbiology.

Endemic in South America, the American trypanosomiasis, or Chagas disease, is transmitted to humans via the parasite Trypanosoma cruzi. The disease is usually transmitted through the bite of an infected insect or ‘kissing bug’. The symptoms are variable, but as the disease progresses serious chronic symptoms can appear, such as heart disease and malformation of the intestines. Most people affected may remain without symptoms for years, making diagnosis difficult.

Chagas disease is also transmitted from mother to unborn child and can be passed on for as many as four generations without symptoms. "In other words, a person born in North America by a mother who was infected can transmit the disease to offspring without having traveled," says Dr. Ndao, Laboratory Director of the National Reference Center for Parasitology (NRCP) of the Research Institute. There is an urgent need for action on this disease as it is under-diagnosed and there is no effective treatment.

This situation raises some serious public health concerns with respect to blood transfusions and organ transplants, because many people may be silent carriers of the disease. "The aim of our study was to find new approaches to improve reliability of diagnosis and screening of blood banks," says Dr. Ndao, who is also a researcher at the Centre for Host Parasite Interactions at McGill University.

The researchers have validated a reliable screening technique using mass spectrometry technology that identifies common biological markers - or biomarkers - between the interaction of host (humans) and the parasite. They found that in 99% of cases, the parasites left very specific markers. 'It's as if the parasite left his own signature in the infected person, which could help to diagnose Chagas disease” says Dr. Ndao.

"The use of these biomarkers is a revolution in diagnostic confidence and protection of possible contamination of blood banks,” says Dr. Ndao “Moreover, these biomarkers have potential therapeutic effects of paving the way for the development of vaccines for Chagas, which could be extended to other parasitic diseases.”

Funding
This study was made possible by grants from the Canadian Institutes of Health Research (CIHR) and by McGill University.

About the Study

The article “Identification of Novel Diagnostic Serum Biomarkers for Chagas’ Disease in Asymptomatic Subjects by Mass Spectrometric Profiling,” published in The Journal of Clinical Microbiology, was co-authored by Momar Ndao and Brian J. Ward from the RI of the MUHC and McGill University; Terry W. Spithill from McGill University and Charles Stuart University and Cynthia Santamaria from McGill University; Rebecca Caffrey from University of California, Berkeley; Hongshan Li from High School of Business, California; Vladimir N. Podust from Vermillion Inc., California, Regis Perichon from Diagnostic Biomarker Evaluation Group Ortho-Clinical Diagnostics, New Jersey; Alberto Ache from Ministerio de Salud y Desarrollo Social, Caracas, Venezuela; Mark Duncan, University of Colorado and Malcolm R. Powell from Western Carolina University and Universidad del Valle Guatemala.

Julie Robert | EurekAlert!
Further information:
http://www.muhc.mcgill.ca

Further reports about: Biomarker Chagas Chagas disease MUHC biological marker microbiology

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>