Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mainz researchers identify novel factor involved in autophagy

12.02.2015

Insight may enable innovative approach for new concepts in the fight against neurodegenerative diseases

Neurodegenerative disorders such as Alzheimer's disease are typically characterized by protein deposits in the brain. These are comprised of defective, insoluble proteins which no longer fulfill their function and which cells are unable to break down.


The transparent nematode C. elegans, only 1 millimeter in length, has characteristics which include a short life cycle and a fixed number of cells. It serves as a model organism primarily for research in developmental biology, genetics, and neurobiology.

source: Dr. Andreas Kern, Mainz University Medical Center

The work group headed by Professor Christian Behl of the Institute of Pathobiochemistry of the University Medical Center of Johannes Gutenberg University Mainz has determined the RAB3GAP complex as a novel factor that influences the efficient degradation of proteins. The researchers were able to show that the complex plays an important role in autophagy, a physiological process that breaks down cellular proteins and organelles.

This insight opens up possible new options for the development of therapeutic and preventative approaches for neurodegenerative diseases. The work group has published the results of their research in the specialized journal Autophagy.

The team led by Professor Christian Behl and Dr. Andreas Kern showed that the RAB3GAP complex has a decisive influence on the process of protein degradation and represents an important element of the cellular autophagy network. Autophagy is a process in which cells digest their own components. These could be excessive or damaged organelles, such as mitochondria, invading pathogens, such as viruses or bacteria, or cytoplasmic macromolecules.

Autophagy serves on the one hand for the recycling of the building blocks of cells and the provision of energy, but is also activated specifically in stress situations. "The controlled protein degradation by autophagy is a core aspect of protein homoeostasis, which means the complex interplay between the formation, folding, and decomposition of proteins. We have extended our understanding of age-related disorders by identifying new factors involved in this process," said Professor Christian Behl.

The research group discovered that the RAB3GAP complex promotes the formation of autophagic vesicles. These are bubble-like structures with a lipid shell that envelop the substrates to be degraded. The autophagic vesicles then fuse with lysosomes, simple cell organelles, which contain digestive enzymes that break down the substrates into their component parts.

"The autophagic vesicles need lipid membranes to form, and the cell has to provide those. Our discovery suggests that RAB3GAP recruits the lipids required for the autophagic degradation of proteins," explained Dr. Andreas Kern of the Institute of Pathobiochemistry, who was responsible for the experiments.

It was previously known that the RAB3GAP complex is important for the regulation of the RAB GTPase RAB3, and that it influenced vesicle transport at the synapses, which are the contact points between nerve cells. The novel finding established that the complex indeed has a dual function, which is of particular relevance with regard to diseases of the nervous system.

The researchers made their discovery employing the nematode C. elegans, which serves as a simplified model, to study the human nervous system. In C. elegans, the biochemists were able to knock down approximately 2,500 individual genes using special molecular biological techniques and analyze the effects on protein aggregation. This allowed the identification of numerous genes that were associated with increased protein aggregation once they had been turned off. Subsequently, the precise functional characterization was completed using cultures of human cells.

The work group at the Institute of Pathobiochemistry was also able to demonstrate that the positive influence on autophagy by the RAB3GAP complex antagonizes that of a previously known negative autophagy regulator. "Our hypothesis is that it is the relative balance of the effects of these opposed molecules that determines the overall autophagic activity of cells. We believe that not only have we come closer to understand the autophagy process itself but also, and more importantly, that it may be possible to develop new approaches to the treatment and prevention of neurodegenerative diseases by means of targeted intervention in this process," stated Behl.

In addition to the Mainz-based team, biochemists from Goethe University Frankfurt am Main were also involved in the research project that stretched over several years. This received funding from a wide range of organizations, including the Alzheimer Forschung Initiative e.V., the German Research Foundation (DFG) – also within the framework of the Collaborative Research Center 1080: "Molecular and cellular mechanisms of neural homoeostasis" –, the European Research Council (ERC), and a number of foundations.

PUBLICATION:
Spang N., Feldmann A., Huesmann H., Bekbulat F., Schmitt V., Hiebel C., Koziollek-Drechsler I., Clement A.M., Moosmann B., Jung J., Behrends C., Dikic I., Kern A., Behl C., RAB3GAP1 and RAB3GAP2 modulate basal and rapamycin-induced autophagy. Autophagy 2014: 10(12):2297-309.
DOI:10.4161/15548627.2014.994359
http://www.tandfonline.com/doi/full/10.4161/15548627.2014.994359#tabModule

CONTACT:
Professor Dr. Christian Behl
Director of the Institute of Pathobiochemistry
University Medical Center of Johannes Gutenberg University Mainz
Duesbergweg 6, D 55099 Mainz – GERMANY
phone +49 6131 39-25890
fax +49 6131 39-25792
e-mail: cbehl@uni-mainz.de
http://www.unimedizin-mainz.de/pathobiochemie

Dr. Christine Ziegler
Institute of Pathobiochemistry
University Medical Center of Johannes Gutenberg University Mainz
Duesbergweg 6, D 55099 Mainz – GERMANY
Telefon +49 6131 39-24552
e-mail: christine.ziegler@uni-mainz.de
http://www.unimedizin-mainz.de/pathobiochemie

PRESS CONTACT:
Oliver Kreft, Press and Public Relations, Mainz University Medical Center
phone +49 6131 17-7424
fax +49 6131 17-3496
e-mail: pr@unimedizin-mainz.de
http://www.unimedizin-mainz.de/index.php?L=1

Weitere Informationen:

http://dx.doi.org/10.4161/15548627.2014.994359

Petra Giegerich | idw - Informationsdienst Wissenschaft

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>