Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mainz researchers identify novel factor involved in autophagy

12.02.2015

Insight may enable innovative approach for new concepts in the fight against neurodegenerative diseases

Neurodegenerative disorders such as Alzheimer's disease are typically characterized by protein deposits in the brain. These are comprised of defective, insoluble proteins which no longer fulfill their function and which cells are unable to break down.


The transparent nematode C. elegans, only 1 millimeter in length, has characteristics which include a short life cycle and a fixed number of cells. It serves as a model organism primarily for research in developmental biology, genetics, and neurobiology.

source: Dr. Andreas Kern, Mainz University Medical Center

The work group headed by Professor Christian Behl of the Institute of Pathobiochemistry of the University Medical Center of Johannes Gutenberg University Mainz has determined the RAB3GAP complex as a novel factor that influences the efficient degradation of proteins. The researchers were able to show that the complex plays an important role in autophagy, a physiological process that breaks down cellular proteins and organelles.

This insight opens up possible new options for the development of therapeutic and preventative approaches for neurodegenerative diseases. The work group has published the results of their research in the specialized journal Autophagy.

The team led by Professor Christian Behl and Dr. Andreas Kern showed that the RAB3GAP complex has a decisive influence on the process of protein degradation and represents an important element of the cellular autophagy network. Autophagy is a process in which cells digest their own components. These could be excessive or damaged organelles, such as mitochondria, invading pathogens, such as viruses or bacteria, or cytoplasmic macromolecules.

Autophagy serves on the one hand for the recycling of the building blocks of cells and the provision of energy, but is also activated specifically in stress situations. "The controlled protein degradation by autophagy is a core aspect of protein homoeostasis, which means the complex interplay between the formation, folding, and decomposition of proteins. We have extended our understanding of age-related disorders by identifying new factors involved in this process," said Professor Christian Behl.

The research group discovered that the RAB3GAP complex promotes the formation of autophagic vesicles. These are bubble-like structures with a lipid shell that envelop the substrates to be degraded. The autophagic vesicles then fuse with lysosomes, simple cell organelles, which contain digestive enzymes that break down the substrates into their component parts.

"The autophagic vesicles need lipid membranes to form, and the cell has to provide those. Our discovery suggests that RAB3GAP recruits the lipids required for the autophagic degradation of proteins," explained Dr. Andreas Kern of the Institute of Pathobiochemistry, who was responsible for the experiments.

It was previously known that the RAB3GAP complex is important for the regulation of the RAB GTPase RAB3, and that it influenced vesicle transport at the synapses, which are the contact points between nerve cells. The novel finding established that the complex indeed has a dual function, which is of particular relevance with regard to diseases of the nervous system.

The researchers made their discovery employing the nematode C. elegans, which serves as a simplified model, to study the human nervous system. In C. elegans, the biochemists were able to knock down approximately 2,500 individual genes using special molecular biological techniques and analyze the effects on protein aggregation. This allowed the identification of numerous genes that were associated with increased protein aggregation once they had been turned off. Subsequently, the precise functional characterization was completed using cultures of human cells.

The work group at the Institute of Pathobiochemistry was also able to demonstrate that the positive influence on autophagy by the RAB3GAP complex antagonizes that of a previously known negative autophagy regulator. "Our hypothesis is that it is the relative balance of the effects of these opposed molecules that determines the overall autophagic activity of cells. We believe that not only have we come closer to understand the autophagy process itself but also, and more importantly, that it may be possible to develop new approaches to the treatment and prevention of neurodegenerative diseases by means of targeted intervention in this process," stated Behl.

In addition to the Mainz-based team, biochemists from Goethe University Frankfurt am Main were also involved in the research project that stretched over several years. This received funding from a wide range of organizations, including the Alzheimer Forschung Initiative e.V., the German Research Foundation (DFG) – also within the framework of the Collaborative Research Center 1080: "Molecular and cellular mechanisms of neural homoeostasis" –, the European Research Council (ERC), and a number of foundations.

PUBLICATION:
Spang N., Feldmann A., Huesmann H., Bekbulat F., Schmitt V., Hiebel C., Koziollek-Drechsler I., Clement A.M., Moosmann B., Jung J., Behrends C., Dikic I., Kern A., Behl C., RAB3GAP1 and RAB3GAP2 modulate basal and rapamycin-induced autophagy. Autophagy 2014: 10(12):2297-309.
DOI:10.4161/15548627.2014.994359
http://www.tandfonline.com/doi/full/10.4161/15548627.2014.994359#tabModule

CONTACT:
Professor Dr. Christian Behl
Director of the Institute of Pathobiochemistry
University Medical Center of Johannes Gutenberg University Mainz
Duesbergweg 6, D 55099 Mainz – GERMANY
phone +49 6131 39-25890
fax +49 6131 39-25792
e-mail: cbehl@uni-mainz.de
http://www.unimedizin-mainz.de/pathobiochemie

Dr. Christine Ziegler
Institute of Pathobiochemistry
University Medical Center of Johannes Gutenberg University Mainz
Duesbergweg 6, D 55099 Mainz – GERMANY
Telefon +49 6131 39-24552
e-mail: christine.ziegler@uni-mainz.de
http://www.unimedizin-mainz.de/pathobiochemie

PRESS CONTACT:
Oliver Kreft, Press and Public Relations, Mainz University Medical Center
phone +49 6131 17-7424
fax +49 6131 17-3496
e-mail: pr@unimedizin-mainz.de
http://www.unimedizin-mainz.de/index.php?L=1

Weitere Informationen:

http://dx.doi.org/10.4161/15548627.2014.994359

Petra Giegerich | idw - Informationsdienst Wissenschaft

More articles from Health and Medicine:

nachricht Hot cars can hit deadly temperatures in as little as one hour
24.05.2018 | Arizona State University

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

When corals eat plastics

24.05.2018 | Ecology, The Environment and Conservation

Surgery involving ultrasound energy found to treat high blood pressure

24.05.2018 | Medical Engineering

First chip-scale broadband optical system that can sense molecules in the mid-IR

24.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>