Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Macrophage proliferation appears to drive progression of atherosclerosis

Proliferation of immune cells within plaques is key mechanism, potential treatment target

New insights into the development of vulnerable atherosclerotic plaques could lead to better treatment or prevention of heart attacks and strokes. In a report being published online in Nature Medicine, researchers at the Massachusetts General Hospital (MGH) Center for Systems Biology re-evaluated previous assumptions regarding the role of inflammatory cells in atherosclerosis and found that the process relies on proliferation of certain immune cells within plaques and not exclusively on the uptake of cells from the blood.

The prevailing theory of atherosclerosis has been that plaques grow by drawing white blood cells called monocytes in from the circulation. These monocytes then mature into macrophages, cells that ingest lipid and cholesterol molecules but remain within the plaques, leading to the buildup of a fatty core that contributes to the risk of plaque rupture. While it had been believed that each macrophage descended from a single monocyte that had entered a plaque, the MGH team found that proliferation of new macrophages within plaques is a major driver of their growth.

"Currently, there is quite a bit of interest in targeting inflammation as a way to treat vascular disease, and one of the ways to do so is by targeting the cells responsible, says Filip Swirski, PhD, of the MGH Center for Systems Biology, senior author of the Nature Medicine report. "We discovered that the atherosclerotic lesion is a very dynamic environment, and even though the macrophages within a lesion are fundamentally derived from monocytes, they do not require constant monocyte input to sustain their numbers."

In a series of experiments in mice, the MGH-CSB team first found that existing plaques within the aortas of animals fed a high-cholesterol diet showed evidence of a rapid and constant proliferation of macrophages that did not require the presence of monocytes in the blood. Although monocytes were needed for the initiation of atherosclerosis, once plaques had formed, macrophage proliferation became the primary mechanism for the further growth of plaques. The investigators also identified a receptor protein on macrophages that appears to contribute to their proliferation within plaques without the involvement of monocytes. While further study is required to determine whether the same processes occur in humans, the MGH team did find evidence of macrophage proliferation in plaques from human carotid arteries.

"I think this work will force some major re-evaluations," says Swirski, an assistant professor of Radiology at Harvard Medical School. "People have been thinking of targeting monocyte influx to treat atherosclerosis, but they need to consider macrophage proliferation as an additional or alternative approach, especially in established disease. That might actually be better than targeting circulating monocytes, since interrupting pathological processes within the plaques themselves could spare the beneficial immune responses mediated by monocytes."

Co-lead authors of the Nature Medicine article are Clinton Robbins, PhD, now at the University of Toronto, and Ingo Helgendorf, MD, MGH Center for Systems Biology. Additional co-authors are Georg Weber, MD, PhD, Igor Theurl, MD, Yoshiko Iwamoto, Jose-Luiz Figueiredo, MD, Rostic Gorbatov, Louisa Gerhardt, Herbert Lin, MD, PhD, Matthias Nahrendorf, MD, PhD, and Ralph Weissleder, MD, PhD, MGH-CSB; David Smyth, Caleb Zavitz, MD, PhD, Eric Shikatani and Mansoor Husain, MD, University of Toronto; Galina Sukhova, PhD, and Peter Libby, MD, Brigham and Women's Hospital; Michael Parsons, Mount Sinai Hospital, Toronto; and Nico van Rooijen, Free University Medical Center, Amsterdam. Support for the study includes National Institutes of Health grants 1R01HL095612, HHSN 268201000044C, P01-A154904, U24-CA092782, P50-CA086355.

Massachusetts General Hospital (, founded in 1811, is the original and largest teaching hospital of Harvard Medical School. The MGH conducts the largest hospital-based research program in the United States, with an annual research budget of more than $775 million and major research centers in AIDS, cardiovascular research, cancer, computational and integrative biology, cutaneous biology, human genetics, medical imaging, neurodegenerative disorders, regenerative medicine, reproductive biology, systems biology, transplantation biology and photomedicine.

Sue McGreevey | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Inflammation Triggers Unsustainable Immune Response to Chronic Viral Infection
24.10.2016 | Universität Basel

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>