Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Macrophage-derived mediators may have potential as biomarkers for urinary stone risk

01.10.2013
A balance between the activation of the inflammatory macrophages and suppression of the anti-inflammatory macrophages in the kidney may play a pivotal role in kidney stone formation.

These macrophage-derived mediators may have potential as biomarkers to reflect the urinary stone risk, according to a new study from Japan, which was recently presented at the recent 2nd Meeting of the EAU Section of Urolithiasis and received Clinical Research Award.

Compared to that of control subjects, the urine from individuals with a history of kidney stone formation showed significantly increased levels of the inflammatory chemokines GRO and CXCL1, and significantly decreased levels of IL-4, an anti-inflammatory cytokine involved in macrophage migration. According to Dr. Dr. Atsushi Okada, of Nagoya City University in Japan, this research deals with some very important issues in the field of urolithiasis.

"To date, the risk evaluation and the preventive index of kidney stone formation have been dependent on urinary inorganic matter such as calcium, phosphorus, magnesium, uric acid, oxalate and citrate. However, stone formers don't often show such an abnormality," he explained.

"In a series of preceding studies, we examined organic substance in kidney stones, such as protein from kidney tissue, and revealed that stone matrix and genetic environment of renal tubular cells are as important as urinary inorganic condition for kidney stone formation."

"In the past we have also shown that in mice, certain regulatory mechanisms protect against urinary calcium oxalate stone formation, and that these mechanisms may be mediated by anti-inflammatory Type 2 macrophages (M2s). However, regulatory roles of M2 macrophages in urinary stone formation in humans have not been studied."

This latest study aimed to identify urinary M2 macrophage-associated markers, by performing multiplex urinalysis in individuals prone to developing calcium oxalate kidney stones. The authors were able to observe that stone-formers had a higher level urinary M1 markers, whereas non-stone formers had a higher level of M2 markers.

Dr. Okada believes that this study may have pronounced implications for clinical practice.

"If the usefulness of these macrophage markers is established, it will be possible to evaluate kidney stone risk not only through inorganic but also some organic substances. Furthermore, these results may lead to the development of new therapeutic drugs for kidney stone formation to control macrophage function.

Reference: A. Okada et al, Macrophage-derived cytokines and chemokines may be novel markers to predict calcium oxalate stone formation in humans, Abstract E88, 2nd Meeting of the EAU Section of Urolithiasis.

Evgenia Starkova | EurekAlert!
Further information:
http://www.uroweb.org

More articles from Health and Medicine:

nachricht Millions through license revenues
27.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Millions through license revenues

27.04.2017 | Health and Medicine

The TU Ilmenau develops tomorrow’s chip technology today

27.04.2017 | Information Technology

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>