Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lying and sitting more comfortably

01.12.2011
People who have to sit at work often have back pain. People permanently confined to bed are even worse off – they frequently develop bed sores. New smart cushioning is intended to eliminate the discomforts of lying and sitting. An integrated sensor system equalizes pressure selectively.

Anyone confined to a wheelchair or a bed has to deal with numerous complications. Frequently, they suffer from bedsores or decubitus ulcers as physicians call them. Bony prominences, such as the sacrum, coccyx and ischium, are especially endangered spots. Unrelieved pressure can lead to tissue necrosis. Damage can extend into the periosteum and, at the worst, into bones themselves.


A sensor mat integrated in a wheelchair set helps prevent pressure ulcers. © Fraunhofer IFF

The ulcers are entryways for germs, which can trigger sepsis. While hitherto available passive aids such as air, gel or vacuum cushions relieve pressure, they do not relieve the affected area optimally. Some patients are also unable to actively control the distribution of pressure and alleviate their own suffering. They are dependent on others for help. Personal care assistants or family caregivers must constantly keep an eye out for the formation of pressure ulcers. A newly developed sensor mat will take over this job in the future and thus prevent tissue damage: Researchers at the Fraunhofer Institute for Factory Operation and Automation IFF in Magdeburg are endowing textile cushions with the capability to “feel” by outfitting them with smart sensor systems.

“Every person has a unique build, which must withstand differing compressive loads. Our sensor mat made of ordinary foam and conductive threads automatically detects how a person is sitting or lying, and automatically equalizes the pressure at endangered points by activating an actuator. One hundred measured points on a typical seat suffice to do this,” says Martin Woitag, research manager at the Fraunhofer IFF. The trick is that the tactile sensor mat functions based on the principle of a parallel-plate capacitor. Instead of plates, two textile components are employed, which form sensor cells arranged in a matrix. Conductive thread functions as an electrode. Sensor cells are mounted in commercially available foam at intervals of four centimeters.

The compression of a single cell varies the voltage and produces an electrical impulse. Measurement electronics connected to the sensor system analyze the data in real time, evaluate them and regulate air cushions located beneath the sensor system. If, for instance, the sensors indicate that the pressure to the rear right is too high, then air is let out of the cushion at that spot – the cushioning is modified flexibly and selectively.

While comparable sensor mats already exist, they are so expensive to manufacture that they are unsuitable for the mass market– a high resolution sensor mat costs several thousand euros. “Since all the materials we use are inexpensive, we can already produce single items for a few hundred euros,” says Woitag. Another advantage is that the weave of the textile employed is breathable and thus prevents moisture buildup. Present systems rely on film technology, which causes sweating.

At around one centimeter, the sensor pad is so thin that it can be integrated in existing applications without any problem. A mat has been prototyped in various shapes and pressure resolutions. First, wheelchair users’ lives will be bettered. Then, the researchers intend to test the system in mattresses, too. In addition to the medical field, the experts are setting their sights on other fields of application: Drivers spend long hours behind the wheel and therefore often suffer from back problems. When integrated in truck seats, the sensor mat will provide drivers more comfort and help prevent postural defects. The prototype has already been produced. The researchers have recruited several industry partners, Isringhausen GmbH, warmX GmbH, Rehability GmbH and the Gesellschaft für Biomechanik Münster mbH, which are providing them support for their project.

Martin Woitag | Fraunhofer Research News
Further information:
http://www.fraunhofer.de/en/press/research-news/2011/december/lying-and-sitting-more-comfortably.html

More articles from Health and Medicine:

nachricht Indications of Psychosis Appear in Cortical Folding
26.04.2018 | Universität Basel

nachricht GLUT5 fluorescent probe fingerprints cancer cells
20.04.2018 | Michigan Technological University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Why we need erasable MRI scans

New technology could allow an MRI contrast agent to 'blink off,' helping doctors diagnose disease

Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

World's smallest optical implantable biodevice

26.04.2018 | Power and Electrical Engineering

Molecular evolution: How the building blocks of life may form in space

26.04.2018 | Life Sciences

First Li-Fi-product with technology from Fraunhofer HHI launched in Japan

26.04.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>