Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Not all lung cancer patients who could benefit from crizotinib are identified by FDA-approved test

29.08.2012
Break apart a couple worm-like chromosomes and they may reconnect with mismatched tips and tails – such is the case of the EML4-ALK fusion gene that creates 2-7 percent of lung cancers.
Almost exactly a year ago, the FDA approved the drug crizotinib to treat these ALK+ lung cancer patients, who were likely never smokers. Informed doctors use the test called a FISH assay to check for the EML4-ALK fusion gene, and then if the test is positive, ALK+ patients benefit greatly from crizotinib.

A recent University of Colorado Cancer Center case study published in the Journal of Thoracic Oncology describes the never-before-seen case of a patient who tested negative for EML4-ALK fusion based on the well-defined criteria for FISH assay as approved by FDA, but nevertheless experienced remission after treatment with crizotinib.

“The case implies that not all patients who might benefit from the drug are captured by the FDA-approved FISH assay. Perhaps despite the FDA pairing of crizotinib with FISH, other assays or other criteria for ALK/FISH positivity could be used,” says paper co-author, Fred R. Hirsch, MD, PhD, investigator at the CU Cancer Center and professor of medical oncology and pathology at the CU School of Medicine.

In fact, it was by chance that after the patient’s negative FISH, Hirsch and colleagues chose to look deeper. Besides using FISH to stain sections of chromosomes with the EML4-ALK fusion gene, the team used immunohistochemistry to look for the protein products of this fusion gene – not the faulty plans but the faulty results. Sure enough, in this case, the patient had the EML4-ALK fusion protein but apparently without the typical EML4-ALK fusion gene that should code for it.

The team looked deeper, using next-gen sequencing to discover what, exactly, was going on in the short arm of chromosome number 2, which harbors the EML4-ALK fusion gene. What they found looked less like a pair of clean breaks that reattached in the wrong places – say, like a snapped radius and ulna that found the wrong reattachments to make a rulna and an ulnius – but more like shattered fragments with genetic shards embedded in and around the primary sections.

“We think these genetic shards made the resulting gene look different enough from the typical EML4-ALK fusion gene to avoid detection by the FDA approved FISH assay,” Hirsch says.

Within two weeks of starting crizotinib, the patient reported improved pain symptoms and energy. Four months after starting the drug, a PET scan, which shows the sugar signatures of rapidly developing cancer cells, was negative. A chest CT scan showed the primary tumor had shrunk by 75 percent.

“Certainly FISH is a valuable assay to check for ALK-positive lung cancer,” Hirsch says. “But we hope this work demonstrates the need to further refine this test, to ensure that all the patients who could benefit from crizotinib in fact receive the drug.”

Together with CU Cancer Center colleagues including Drs. Doebele, Garcia, Aisner and Camidge, Hirsch is participating in a larger study comparing different assays for ALK testing to determine which assay or combination of assays identifies the most patients likely to benefit from crizotinib.

Garth Sundem | EurekAlert!
Further information:
http://www.ucdenver.edu

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>