Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Not all lung cancer patients who could benefit from crizotinib are identified by FDA-approved test

Break apart a couple worm-like chromosomes and they may reconnect with mismatched tips and tails – such is the case of the EML4-ALK fusion gene that creates 2-7 percent of lung cancers.
Almost exactly a year ago, the FDA approved the drug crizotinib to treat these ALK+ lung cancer patients, who were likely never smokers. Informed doctors use the test called a FISH assay to check for the EML4-ALK fusion gene, and then if the test is positive, ALK+ patients benefit greatly from crizotinib.

A recent University of Colorado Cancer Center case study published in the Journal of Thoracic Oncology describes the never-before-seen case of a patient who tested negative for EML4-ALK fusion based on the well-defined criteria for FISH assay as approved by FDA, but nevertheless experienced remission after treatment with crizotinib.

“The case implies that not all patients who might benefit from the drug are captured by the FDA-approved FISH assay. Perhaps despite the FDA pairing of crizotinib with FISH, other assays or other criteria for ALK/FISH positivity could be used,” says paper co-author, Fred R. Hirsch, MD, PhD, investigator at the CU Cancer Center and professor of medical oncology and pathology at the CU School of Medicine.

In fact, it was by chance that after the patient’s negative FISH, Hirsch and colleagues chose to look deeper. Besides using FISH to stain sections of chromosomes with the EML4-ALK fusion gene, the team used immunohistochemistry to look for the protein products of this fusion gene – not the faulty plans but the faulty results. Sure enough, in this case, the patient had the EML4-ALK fusion protein but apparently without the typical EML4-ALK fusion gene that should code for it.

The team looked deeper, using next-gen sequencing to discover what, exactly, was going on in the short arm of chromosome number 2, which harbors the EML4-ALK fusion gene. What they found looked less like a pair of clean breaks that reattached in the wrong places – say, like a snapped radius and ulna that found the wrong reattachments to make a rulna and an ulnius – but more like shattered fragments with genetic shards embedded in and around the primary sections.

“We think these genetic shards made the resulting gene look different enough from the typical EML4-ALK fusion gene to avoid detection by the FDA approved FISH assay,” Hirsch says.

Within two weeks of starting crizotinib, the patient reported improved pain symptoms and energy. Four months after starting the drug, a PET scan, which shows the sugar signatures of rapidly developing cancer cells, was negative. A chest CT scan showed the primary tumor had shrunk by 75 percent.

“Certainly FISH is a valuable assay to check for ALK-positive lung cancer,” Hirsch says. “But we hope this work demonstrates the need to further refine this test, to ensure that all the patients who could benefit from crizotinib in fact receive the drug.”

Together with CU Cancer Center colleagues including Drs. Doebele, Garcia, Aisner and Camidge, Hirsch is participating in a larger study comparing different assays for ALK testing to determine which assay or combination of assays identifies the most patients likely to benefit from crizotinib.

Garth Sundem | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>