Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

LSUHSC research discovery provides therapeutic target for ALS

20.12.2012
Research led by Dr. Udai Pandey, Assistant Professor of Genetics at LSU Health Sciences Center New Orleans, has found that the ability of a protein made by a gene called FUS to bind to RNA is essential to the development of Amyotrophic Lateral Sclerosis (ALS).

This discovery identifies a possible therapeutic target for the fatal neurological disease. The research will be available online in the Advanced Access section of the journal Human Molecular Genetics website, posted by December 21, 2012. It will be published in an upcoming issue of the journal.

The current project advances Dr. Pandey's ALS research by teasing out specifically how the FUS gene causes the disease. To find out whether or not the RNA binding ability of FUS was required for the disease pathogenesis, the researchers mutated FUS RNA binding sites and produced a version of FUS that couldn't bind RNA, both with and without ALS mutations. They found that not only could they eliminate FUS RNA binding, but when they blocked RNA binding, they also suppressed ALS related neurodegeneration, demonstrating that the RNA binding ability of FUS is essential to the ALS disease process.

The researchers are working with fruit flies – the first animal model of FUS-related ALS, a model Dr. Pandey developed. The fruit flies were engineered to carry and express a mutated human FUS gene. This mutated FUS gene has been shown to be one of the causes of both familial and sporadic ALS. In the fruit flies, the resulting neurodegeneration impairs their ability to walk or climb and the defect is also easily visualized in the structure of their eyes. In addition, the flies carrying the defective FUS gene demonstrate hallmarks of the human disease, such as an age-dependent degeneration of neurons, accumulation of abnormal proteins and a decrease in life span. The fly model is a valuable resource for performing drug screens to identify drugs that could modify the effects of the mutated gene in humans.

"Our findings may pave the way for development of drugs targeting the biological processes responsible for causing ALS, and leading to treatments or prevention of this currently fatal, incurable condition, " notes Pandey. "The fly model is an inexpensive and fast way to study ALS as well as many human diseases such as cancer, Alzheimer's disease and Parkinson's disease. Many basic biological processes are well conserved between humans and fruit flies, and nearly 75% of human disease-causing genes are believed to have a functional partner (homolog) in the fly that makes these small animals a highly tractable model system."

"These intriguing findings inspire us and other researchers to search for drugs that can make the defective FUS protein less toxic by targeting is RNA binding as a potential therapeutic intervention," noted Gavin Daigle (Graduate student in the Pandey lab and leading author of the manuscript).

According to the National Institutes of Health, Amyotrophic Lateral Sclerosis, sometimes called Lou Gehrig's disease, is a rapidly progressive, invariably fatal neurological disease that attacks the nerve cells (neurons) responsible for controlling voluntary muscles. The disease belongs to a group of disorders known as motor neuron diseases, which are characterized by the gradual degeneration and death of motor neurons. Motor neurons are nerve cells located in the brain, brainstem, and spinal cord that serve as controlling units and vital communication links between the nervous system and the voluntary muscles of the body. Messages from motor neurons in the brain (called upper motor neurons) are transmitted to motor neurons in the spinal cord (called lower motor neurons) and from them to particular muscles. In ALS, both the upper motor neurons and the lower motor neurons degenerate or die, ceasing to send messages to muscles. Unable to function, the muscles gradually weaken, waste away (atrophy), and twitch (fasciculations). Eventually, the ability of the brain to start and control voluntary movement is lost.

The research team also included J Gavin Daigle, Dr. Nicholas A Lanson, Jr., Ian Casci, Dr. John Monaghan, Astha Maltare, and Dr. Charles Nichols at LSU Health Sciences Center New Orleans, Dr. Rebecca Smith from St. Jude Children's Research Center, and Dr. Frank Shewmaker and Dr. Dmitri Kryndushkin at the Uniformed Services University of the Health Sciences, Bethesda, MD.

The research was supported by funding from the Robert Packard Center for ALS at Johns Hopkins, the National Institutes of Health, and the Amyotrophic Lateral Sclerosis Association.

LSU Health Sciences Center New Orleans educates Louisiana's health care professionals. The state's academic health leader, LSUHSC New Orleans consists of a School of Medicine, the state's only School of Dentistry, Louisiana's only public School of Public Health, Schools of Allied Health Professions and Graduate Studies, and the only School of Nursing within an academic health center in the State of Louisiana. LSUHSC faculty take care of patients in public and private settings in the region, conduct research that improves the quality of life and generates jobs and economic impact, and perform service and outreach activities spanning the State. To learn more, visit http://www.lsuhsc.edu and http://www.twitter.com/LSUHSCHealth.

Leslie Capo | EurekAlert!
Further information:
http://www.lsuhsc.edu

More articles from Health and Medicine:

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

nachricht New type of blood cells work as indicators of autoimmunity
14.08.2017 | Instituto de Medicina Molecular

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>