Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

LSUHSC research discovery provides therapeutic target for ALS

20.12.2012
Research led by Dr. Udai Pandey, Assistant Professor of Genetics at LSU Health Sciences Center New Orleans, has found that the ability of a protein made by a gene called FUS to bind to RNA is essential to the development of Amyotrophic Lateral Sclerosis (ALS).

This discovery identifies a possible therapeutic target for the fatal neurological disease. The research will be available online in the Advanced Access section of the journal Human Molecular Genetics website, posted by December 21, 2012. It will be published in an upcoming issue of the journal.

The current project advances Dr. Pandey's ALS research by teasing out specifically how the FUS gene causes the disease. To find out whether or not the RNA binding ability of FUS was required for the disease pathogenesis, the researchers mutated FUS RNA binding sites and produced a version of FUS that couldn't bind RNA, both with and without ALS mutations. They found that not only could they eliminate FUS RNA binding, but when they blocked RNA binding, they also suppressed ALS related neurodegeneration, demonstrating that the RNA binding ability of FUS is essential to the ALS disease process.

The researchers are working with fruit flies – the first animal model of FUS-related ALS, a model Dr. Pandey developed. The fruit flies were engineered to carry and express a mutated human FUS gene. This mutated FUS gene has been shown to be one of the causes of both familial and sporadic ALS. In the fruit flies, the resulting neurodegeneration impairs their ability to walk or climb and the defect is also easily visualized in the structure of their eyes. In addition, the flies carrying the defective FUS gene demonstrate hallmarks of the human disease, such as an age-dependent degeneration of neurons, accumulation of abnormal proteins and a decrease in life span. The fly model is a valuable resource for performing drug screens to identify drugs that could modify the effects of the mutated gene in humans.

"Our findings may pave the way for development of drugs targeting the biological processes responsible for causing ALS, and leading to treatments or prevention of this currently fatal, incurable condition, " notes Pandey. "The fly model is an inexpensive and fast way to study ALS as well as many human diseases such as cancer, Alzheimer's disease and Parkinson's disease. Many basic biological processes are well conserved between humans and fruit flies, and nearly 75% of human disease-causing genes are believed to have a functional partner (homolog) in the fly that makes these small animals a highly tractable model system."

"These intriguing findings inspire us and other researchers to search for drugs that can make the defective FUS protein less toxic by targeting is RNA binding as a potential therapeutic intervention," noted Gavin Daigle (Graduate student in the Pandey lab and leading author of the manuscript).

According to the National Institutes of Health, Amyotrophic Lateral Sclerosis, sometimes called Lou Gehrig's disease, is a rapidly progressive, invariably fatal neurological disease that attacks the nerve cells (neurons) responsible for controlling voluntary muscles. The disease belongs to a group of disorders known as motor neuron diseases, which are characterized by the gradual degeneration and death of motor neurons. Motor neurons are nerve cells located in the brain, brainstem, and spinal cord that serve as controlling units and vital communication links between the nervous system and the voluntary muscles of the body. Messages from motor neurons in the brain (called upper motor neurons) are transmitted to motor neurons in the spinal cord (called lower motor neurons) and from them to particular muscles. In ALS, both the upper motor neurons and the lower motor neurons degenerate or die, ceasing to send messages to muscles. Unable to function, the muscles gradually weaken, waste away (atrophy), and twitch (fasciculations). Eventually, the ability of the brain to start and control voluntary movement is lost.

The research team also included J Gavin Daigle, Dr. Nicholas A Lanson, Jr., Ian Casci, Dr. John Monaghan, Astha Maltare, and Dr. Charles Nichols at LSU Health Sciences Center New Orleans, Dr. Rebecca Smith from St. Jude Children's Research Center, and Dr. Frank Shewmaker and Dr. Dmitri Kryndushkin at the Uniformed Services University of the Health Sciences, Bethesda, MD.

The research was supported by funding from the Robert Packard Center for ALS at Johns Hopkins, the National Institutes of Health, and the Amyotrophic Lateral Sclerosis Association.

LSU Health Sciences Center New Orleans educates Louisiana's health care professionals. The state's academic health leader, LSUHSC New Orleans consists of a School of Medicine, the state's only School of Dentistry, Louisiana's only public School of Public Health, Schools of Allied Health Professions and Graduate Studies, and the only School of Nursing within an academic health center in the State of Louisiana. LSUHSC faculty take care of patients in public and private settings in the region, conduct research that improves the quality of life and generates jobs and economic impact, and perform service and outreach activities spanning the State. To learn more, visit http://www.lsuhsc.edu and http://www.twitter.com/LSUHSCHealth.

Leslie Capo | EurekAlert!
Further information:
http://www.lsuhsc.edu

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>