Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Low testosterone levels could raise diabetes risk for men

Low levels of testosterone in men could increase their risk of developing diabetes, a study suggests.

Scientists have found that low testosterone levels are linked to a resistance to insulin, the hormone that controls blood sugar levels.

The study is the first to directly show how low testosterone levels in fat tissue can be instrumental in the onset of Type 2 diabetes.

Testosterone is present throughout the body. Low testosterone levels are linked to obesity, a known risk factor for diabetes.

It acts on fat cells through molecules known as androgen receptors. These enable the testosterone to activate genes linked to obesity and diabetes.

The research showed that mice in which the function of testosterone in fat tissue was impaired were more likely to be insulin resistant than mice in which the role of testosterone was not hindered.

The study showed that insulin resistance occurred in mice when the function of testosterone was impaired regardless of body weight.

The findings from the University of Edinburgh could also help explain why older men are more at risk of developing diabetes, because testosterone levels fall in men as they age.

Dr Kerry McInnes, from the University of Edinburgh's Endocrinology Unit, said: "We know that men with low testosterone levels are more likely to become obese, and as a develop diabetes. This study shows that low testosterone is a risk factor for diabetes no matter how much a person weighs. As men age their testosterone levels lower. This, along with increasing obesity, will increase the incidence of diabetes."

The study, funded by Diabetes UK showed that mice, which did not have androgen receptors in fat tissue for testosterone to attach to, were more likely to show signs of insulin resistance than other mice.

Researchers found that mice without androgen receptors in fat tissue also became fatter than other mice and developed full insulin resistance when both types were fed a high-fat diet.

Scientists believe that a protein called RBP4 plays a crucial role in regulating insulin resistance when testosterone is impaired.

They found that levels of RBP4 were higher in mice in which the role of testosterone was impaired.

The Edinburgh team say that its findings could lead to the development of new treatments that regulate production of RBP4 and reduce the risk of diabetes in men with lower levels of testosterone.

Researchers are now planning to study patients with Type-2 diabetes to see if their levels of testosterone correlate with levels of RBP 4.

Dr Iain Frame, Director of Research at Diabetes UK, said: "We already know that low testosterone levels are associated with increased obesity and therefore with increased risk of developing Type 2 diabetes, but this study provides evidence that there can be increased risk even when body mass is not affected. Yet while testosterone-impaired mice developed insulin resistance whatever diet they were given, the effect was considerably more pronounced on those fed on a high fat diet. This reinforces Diabetes UK advice that a healthy balanced diet is important for everyone and particularly for those already at high risk of developing Type 2 diabetes.

"Further work is needed to translate these initial findings into clinical practice, as it is important to emphasise that results in mice may not necessarily have direct relevance for humans. But good basic research such as this represents early steps towards potential new treatments and we are pleased to see research we have funded producing useful results which may benefit people living with diabetes at some point in the future."

Notes to editors

Diabetes UK is the leading UK charity that cares for, connects with and campaigns on behalf of all people affected by and at risk of diabetes. Through a range of research funding schemes, Diabetes UK supports researchers engaged in projects committed to improving the care and treatment of diabetes, preventing it from developing in those at risk and, ultimately, finding a cure. For more information on all aspects of diabetes and access to Diabetes UK activities and services, visit

Tara Womersley | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Inflammation Triggers Unsustainable Immune Response to Chronic Viral Infection
24.10.2016 | Universität Basel

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>