Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Low Doses of THC Can Halt Brain Damage

31.05.2013
Extremely low doses of marijuana's psychoactive component protect brain before and after injury, says TAU researcher
Though marijuana is a well-known recreational drug, extensive scientific research has been conducted on the therapeutic properties of marijuana in the last decade. Medical cannabis is often used by sufferers of chronic ailments, including cancer and post-traumatic stress disorder, to combat pain, insomnia, lack of appetite, and other symptoms.

Now Prof. Yosef Sarne of Tel Aviv University's Adelson Center for the Biology of Addictive Diseases at the Sackler Faculty of Medicine says that the drug has neuroprotective qualities as well. He has found that extremely low doses of THC — the psychoactive component of marijuana — protects the brain from long-term cognitive damage in the wake of injury from hypoxia (lack of oxygen), seizures, or toxic drugs. Brain damage can have consequences ranging from mild cognitive deficits to severe neurological damage.

Previous studies focused on injecting high doses of THC within a very short time frame — approximately 30 minutes — before or after injury. Prof. Sarne's current research, published in the journals Behavioural Brain Research and Experimental Brain Research, demonstrates that even extremely low doses of THC — around 1,000 to 10,000 times less than that in a conventional marijuana cigarette — administered over a wide window of 1 to 7 days before or 1 to 3 days after injury can jumpstart biochemical processes which protect brain cells and preserve cognitive function over time.
This treatment, especially in light of the long time frame for administration and the low dosage, could be applicable to many cases of brain injury and be safer over time, Prof. Sarne says.

Conditioning the brain
While performing experiments on the biology of cannabis, Prof. Sarne and his fellow researchers discovered that low doses of the drug had a big impact on cell signalling, preventing cell death and promoting growth factors. This finding led to a series of experiments designed to test the neuroprotective ability of THC in response to various brain injuries.
In the lab, the researchers injected mice with a single low dose of THC either before or after exposing them to brain trauma. A control group of mice sustained brain injury but did not receive the THC treatment. When the mice were examined 3 to 7 weeks after initial injury, recipients of the THC treatment performed better in behavioral tests measuring learning and memory. Additionally, biochemical studies showed heightened amounts of neuroprotective chemicals in the treatment group compared to the control group.

The use of THC can prevent long-term cognitive damage that results from brain injury, the researchers conclude. One explanation for this effect is pre- and post-conditioning, whereby the drug causes minute damage to the brain to build resistance and trigger protective measures in the face of much more severe injury, explains Prof. Sarne. The low dosage of THC is crucial to initiating this process without causing too much initial damage.
Preventative and long-term use

According to Prof. Sarne, there are several practical benefits to this treatment plan. Due to the long therapeutic time window, this treatment can be used not only to treat injury after the fact, but also to prevent injury that might occur in the future. For example, cardiopulmonary heart-lung machines used in open heart surgery carry the risk of interrupting the blood supply to the brain, and the drug can be delivered beforehand as a preventive measure. In addition, the low dosage makes it safe for regular use in patients at constant risk of brain injury, such as epileptics or people at a high risk of heart attack.

Prof. Sarne is now working in collaboration with Prof. Edith Hochhauser of the Rabin Medical Center to test the ability of low doses of THC to prevent damage to the heart. Preliminary results indicate that they will find the same protective phenomenon in relation to cardiac ischemia, in which the heart muscle receives insufficient blood flow.

George Hunka | EurekAlert!
Further information:
http://www.aftau.org

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>