Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Low Doses of THC Can Halt Brain Damage

31.05.2013
Extremely low doses of marijuana's psychoactive component protect brain before and after injury, says TAU researcher
Though marijuana is a well-known recreational drug, extensive scientific research has been conducted on the therapeutic properties of marijuana in the last decade. Medical cannabis is often used by sufferers of chronic ailments, including cancer and post-traumatic stress disorder, to combat pain, insomnia, lack of appetite, and other symptoms.

Now Prof. Yosef Sarne of Tel Aviv University's Adelson Center for the Biology of Addictive Diseases at the Sackler Faculty of Medicine says that the drug has neuroprotective qualities as well. He has found that extremely low doses of THC — the psychoactive component of marijuana — protects the brain from long-term cognitive damage in the wake of injury from hypoxia (lack of oxygen), seizures, or toxic drugs. Brain damage can have consequences ranging from mild cognitive deficits to severe neurological damage.

Previous studies focused on injecting high doses of THC within a very short time frame — approximately 30 minutes — before or after injury. Prof. Sarne's current research, published in the journals Behavioural Brain Research and Experimental Brain Research, demonstrates that even extremely low doses of THC — around 1,000 to 10,000 times less than that in a conventional marijuana cigarette — administered over a wide window of 1 to 7 days before or 1 to 3 days after injury can jumpstart biochemical processes which protect brain cells and preserve cognitive function over time.
This treatment, especially in light of the long time frame for administration and the low dosage, could be applicable to many cases of brain injury and be safer over time, Prof. Sarne says.

Conditioning the brain
While performing experiments on the biology of cannabis, Prof. Sarne and his fellow researchers discovered that low doses of the drug had a big impact on cell signalling, preventing cell death and promoting growth factors. This finding led to a series of experiments designed to test the neuroprotective ability of THC in response to various brain injuries.
In the lab, the researchers injected mice with a single low dose of THC either before or after exposing them to brain trauma. A control group of mice sustained brain injury but did not receive the THC treatment. When the mice were examined 3 to 7 weeks after initial injury, recipients of the THC treatment performed better in behavioral tests measuring learning and memory. Additionally, biochemical studies showed heightened amounts of neuroprotective chemicals in the treatment group compared to the control group.

The use of THC can prevent long-term cognitive damage that results from brain injury, the researchers conclude. One explanation for this effect is pre- and post-conditioning, whereby the drug causes minute damage to the brain to build resistance and trigger protective measures in the face of much more severe injury, explains Prof. Sarne. The low dosage of THC is crucial to initiating this process without causing too much initial damage.
Preventative and long-term use

According to Prof. Sarne, there are several practical benefits to this treatment plan. Due to the long therapeutic time window, this treatment can be used not only to treat injury after the fact, but also to prevent injury that might occur in the future. For example, cardiopulmonary heart-lung machines used in open heart surgery carry the risk of interrupting the blood supply to the brain, and the drug can be delivered beforehand as a preventive measure. In addition, the low dosage makes it safe for regular use in patients at constant risk of brain injury, such as epileptics or people at a high risk of heart attack.

Prof. Sarne is now working in collaboration with Prof. Edith Hochhauser of the Rabin Medical Center to test the ability of low doses of THC to prevent damage to the heart. Preliminary results indicate that they will find the same protective phenomenon in relation to cardiac ischemia, in which the heart muscle receives insufficient blood flow.

George Hunka | EurekAlert!
Further information:
http://www.aftau.org

More articles from Health and Medicine:

nachricht Cardiac diseases: when less is more
30.03.2017 | Universitätsspital Bern

nachricht TSRI researchers develop new method to 'fingerprint' HIV
29.03.2017 | Scripps Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Unique genome architectures after fertilisation in single-cell embryos

30.03.2017 | Life Sciences

Pinball at the atomic level

30.03.2017 | Physics and Astronomy

Organic-inorganic heterostructures with programmable electronic properties

30.03.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>