Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New low-cost method to deliver vaccine shows promise

16.11.2010
Researchers have developed a promising new approach to vaccination for rotavirus, a common cause of severe diarrheal disease that is responsible for approximately 500,000 deaths among children in the developing world every year.

In a study published in the November issue of Clinical and Vaccine Immunology, a vaccine delivered as nasal drops effectively induced an immune response in mice and protected them from rotavirus infection. The new vaccine delivery system has also been tested successfully and found to be heat stable with tetanus and is currently being tested with diphtheria and pertussis.

The team from the Cummings School of Veterinary Medicine at Tufts University and Tufts University School of Medicine collaborated with researchers from Boston and Tulane Universities to test the effectiveness of immunization with harmless bacteria that were engineered to display rotavirus protein.

"The new vaccine, in conjunction with an agent that enhances immunity, induced sufficient antibody formation against rotavirus to protect mice against infection when the mice were exposed to rotavirus three weeks after their third immunization," explained John E. Herrmann, PhD, research professor in the infectious diseases division of the department of biomedical sciences at the Cummings School of Veterinary Medicine at Tufts University and the senior author of the published study.

"We created the rotavirus vaccine using a harmless bacterium called Bacillus subtilis (B. subtilis), which we can modify to display on its surface or in its cytoplasm proteins from infectious bacteria and viruses. When people are exposed to these proteins, they develop antibodies against them and therefore become immune to the bacteria and viruses," said the study's first author Sangun Lee, PhD, DVM, research associate at the Cummings School. "The B. subtilis bacteria are so harmless that they are part of the normal diet in several Asian countries."

"The vaccine with the Bacillus bacteria is very inexpensive to produce in large quantities and, unlike most traditional vaccines, requires no special purification steps before use. As a result, the cost of vaccine production is unusually low," explained Saul Tzipori, BVSc (DVM), DSc, PhD, Agnes Varis University Chair in Science and Society, distinguished professor of microbiology and infectious diseases, and director of the infectious diseases division of the department of biomedical sciences at the Cummings School. These findings are consistent with the team's previous studies in which they demonstrated that B. subtilis bacteria displaying a fragment of tetanus toxin protein completely protect mice from tetanus. Tetanus vaccines have been stored for more than a year at 113ºF without any loss of potency, a property that may be common to all B. subtilis vaccines.

Vaccines currently available have to be stored in refrigerators or freezers until the moment they are administered. This cold chain is difficult and costly to maintain. In many parts of the world, there is insufficient refrigeration or electricity to keep vaccines cold. The lack of refrigeration combined with the lack of trained personnel, especially in rural areas in developing countries, make it impossible for many children and adults to be vaccinated against standard infections, such as tetanus, rotavirus, diphtheria, pertussis (whooping cough) and other diseases.

"In addition to being heat-stable and low-cost, the B. subtilis vaccines are given in the form of nasal drops or spray. A needle-free approach to vaccination is particularly advantageous in developing countries where clean needles and syringes and trained personnel are not always available," said team leader Abraham L. (Linc) Sonenshein, PhD, professor and acting chair of molecular biology and microbiology at TUSM and member of the genetics and microbiology program faculties at the Sackler School of Graduate Biomedical Sciences at Tufts.

"This vaccine project is still in the developmental stage," he continued. "The next major step for these vaccines is to show that they are safe and work well in humans, and then to extend the rotavirus and tetanus vaccine technology to include diphtheria, pertussis and other infectious diseases. Those diseases cause tens of thousands of deaths, particularly in newborns and in South-East Asia. We are actively looking for partners in the US and around the world to help us pursue our goal of reaching the point where many childhood and adult vaccines can be manufactured in a way that avoids the need for injection or refrigeration. Jerry Keusch of Boston University School of Public Health and I started this project 15 years ago and it has taken a long time to reach the stage where we now have effective needle-free vaccines. The technology has now advanced enough that we can expect to be successful with many other vaccines in a short time frame."

Additional authors include Boris R. Belitsky, PhD, assistant research professor in the department of molecular biology and microbiology at TUSM; James P. Brinker, M.P.H, in the department of biomedical sciences at the Cummings School; Kathryn O. Kerstein, MS, senior research associate in the department of molecular biology and microbiology at TUSM; David W. Brown, PhD, DVM, clinical assistant professor in the infectious diseases division of the department of biomedical sciences at the Cummings School; Gerald T. Keusch, MD, professor in the department of international health at Boston University School of Public Health, professor of medicine at Boston University School of Medicine and U.S. chairman of the Indo-U.S. Vaccine Action Program at the National Institutes of Health; and John D. Clements, PhD, professor and chair of the department of microbiology and immunology at Tulane University Health Sciences Center.

This study was supported by a grant from the Grand Challenges in Global Health program of the Bill and Melinda Gates Foundation, and this grant was administered by the Foundation for the National Institutes of Health. Patent applications related to the discoveries reported in these studies have been filed by Tufts University.

Lee S, Belitsky BR, Brinker JP, Kerstein KO, Brown DW, Clements JD, Keusch GT, Tzipori S, Sonenshein AL, Herrmann JE. Clinical and Vaccine Immunology.. 2010 (November); 17 (11): 1647-1655. "Development of a Bacillus subtilis-based rotavirus vaccine." DOI: 10.1128/CVI/00135-10.

Lee S, Belitsky BR, Brown DW, Brinker JP, Kerstein KO, Herrmann JE, Keusch GT, Sonenshein AL, Tzipori S. Vaccine. 2010 (September 24); 28 (41), 6658-6665. "Efficacy, heat stability and safety of intranasally administered Bacillus subtilis spore or vegetative cell vaccines expressing tetanus toxin fragment C." DOI:10.1016/j.vaccine.2010.08.016

About Tufts University School of Medicine, the Sackler School of Graduate Biomedical Sciences

Tufts University School of Medicine and the Sackler School of Graduate Biomedical Sciences at Tufts University are international leaders in innovative medical education and advanced research. The School of Medicine and the Sackler School are renowned for excellence in education in general medicine, biomedical sciences, special combined degree programs in business, health management, public health, bioengineering and international relations, as well as basic and clinical research at the cellular and molecular level. Ranked among the top in the nation, the School of Medicine is affiliated with six major teaching hospitals and more than 30 health care facilities. Tufts University School of Medicine and the Sackler School undertake research that is consistently rated among the highest in the nation for its effect on the advancement of medical science.

About the Cummings School of Veterinary Medicine

Founded in 1978 in North Grafton, Mass., the Cummings School of Veterinary Medicine at Tufts University is known for academic programs that impact society and the practice of veterinary medicine; five hospitals that treat over 30,00 cases each year; and groundbreaking research that benefits animal, public, and environmental health.

If you are a member of the media interested in learning more about this topic, or speaking with a faculty member at the Tufts University School of Medicine, the Sackler School of Graduate Biomedical Sciences, or another Tufts health sciences researcher, please contact Siobhan Gallagher at 617-636-6586. To speak with a researcher at the Cummings School of Veterinary Medicine, please contact Tom Keppeler at (508) 839-7910.

Siobhan E. Gallagher | EurekAlert!
Further information:
http://www.tufts.edu/

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>