Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Low blood oxygen may lead to heart defects in children with sickle cell disease

28.04.2010
Children with sickle cell disease who also have lower blood oxygen levels while both asleep and awake are likely to have heart abnormalities, researchers at Washington University School of Medicine in St. Louis and other institutions have found.

Heart problems are fairly common in young adults with sickle cell disease, but physicians don't fully understand why. The researchers demonstrated that lower oxygen saturation in the blood was linked to the heart structure seen in the 44 children studied.

Sickle cell disease is an inherited blood disorder affecting red blood cells, which contain hemoglobin, the substance that carries oxygen from the lungs to all parts of the body. In patients with this disease, red blood cells contain an abnormal type of hemoglobin that causes the normally round, flexible red blood cells to become stiff and sickle- or crescent-shaped. The sickle cells can't pass through tiny blood vessels, which can prevent blood from reaching some tissues and can result in tissue and organ damage, pain and stroke.

In addition, sickle cells are short lived and lead to a shortage of red blood cells and anemia, which make the heart grow bigger because it has to work harder, says Mark C. Johnson, MD, associate professor of pediatrics at Washington University School of Medicine and first author of the study.

In this study, the first to analyze sleep studies and echocardiograms of children with sickle cell disease, these heart abnormalities were found in the left pumping chamber, or left ventricle, of the children's hearts. The findings included an enlarged left ventricle, called ventricular hypertrophy, and abnormal blood filling of the left ventricle, called diastolic dysfunction. Both are associated with early death in adults with sickle cell disease, but the meanings of the same results in children are unclear.

"This suggests that the beginning of adult heart disease may start in children, but we need to follow these patients longitudinally to strengthen the meaning of the findings," says Michael R. DeBaun, MD, a Washington University sickle cell disease specialist at St. Louis Children's Hospital and senior author of the study, published online in Blood First Edition April 8, 2010.

"Many researchers assumed it was the anemia alone that makes the heart enlarge, but this study suggests it's not that simple," Johnson says.

Researchers began the study thinking that the abnormalities in the left ventricle, the heart's main blood-pumping chamber, would be the result of sleep-disordered breathing, such as sleep apnea, commonly found in children with sickle cell disease. Sleep-disordered breathing has previously been associated with left ventricle hypertrophy and with diastolic dysfunction in children and adults. But only about one-fifth of the children had some evidence of obstructive apnea hypopnea, or recurrent episodes of upper airway collapse and obstruction during sleep.

Researchers also thought they would find lower oxygen saturation while patients were sleeping compared to when they were awake. However, the average oxygen saturation while asleep and awake were similar. Only about one-fourth of patients had average oxygen saturation values below normal.

The echocardiograms showed that 46 percent of participants had left ventricle hypertrophy in which the chamber of the left ventricle was enlarged. The research team's analysis showed that for every 1 percent drop in oxygen saturation, there was a measurable increase in the mass of the heart's left ventricle.

"The average oxygen saturation of 97 percent in these children is in a normal range, but the patients with slightly lower levels had enlarged hearts," Johnson says. "A relatively small change in oxygen levels caused a big change in the heart. That's what makes us think there's something under the surface that we don't quite understand yet."

The team also measured an indicator of pulmonary hypertension, or high blood pressure in the lungs, the major cause of death in adults with sickle cell disease. When the pulmonary hypertension level is raised in adults with sickle cell disease, it is a strong predictor of death within 24 months. However, despite the strong association between pulmonary hypertension and sleep abnormalities, no such association was demonstrated in this study, DeBaun says.

Johnson and DeBaun say more sleep and cardiac studies are needed to confirm the association of left ventricle abnormalities with low blood oxygen levels. In the future, the researchers plan to look at other indicators to find potential new therapies to prevent progression of the disease.

Johnson M, Kirkham F, Redline S, Rosen C, Yan Y, Roberts I, Gruenwald J, Marek J, DeBaun M. Left Ventricular Hypertrophy and Diastolic Dysfunction in Children with Sickle Cell Disease are Related to Asleep and Waking Oxygen Desaturation. Blood First Edition. Prepublished online April 8, 2010.

Funding for this study was provided by the National Heart, Lung, and Blood Institute.

Washington University School of Medicine's 2,100 employed and volunteer faculty physicians also are the medical staff of Barnes-Jewish and St. Louis Children's hospitals. The School of Medicine is one of the leading medical research, teaching and patient care institutions in the nation, currently ranked fourth in the nation by U.S. News & World Report. Through its affiliations with Barnes-Jewish and St. Louis Children's hospitals, the School of Medicine is linked to BJC HealthCare.

Beth Miller | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Health and Medicine:

nachricht Improving memory with magnets
28.03.2017 | McGill University

nachricht Graphene-based neural probes probe brain activity in high resolution
28.03.2017 | Graphene Flagship

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>