Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Getting Lost in Buildings: Architecture Can Bias Your Cognitive Map

24.11.2010
Some people always know which way is north and how to get out of a building. Others can live in an apartment for years without knowing which side faces the street.

Differences among people that include spatial skills, experience, and preferred strategies for wayfinding are part of what determines whether people get lost in buildings—and psychological scientists could help architects understand where and why people might get lost in their buildings, according to the authors of an article published in Current Directions in Psychological Science, a journal of the Association for Psychological Science.

When you enter a new building, you build a cognitive map—a representation in your mind of the objects and locations in that environment. Success in navigating in the building may depend upon what information you put into the cognitive map. “For example, imagine visiting a new doctor’s office. You walk in the front door and find your way to the office, storing information about your route and the objects you encounter in your cognitive map. What is most interesting is how this information is then used to direct you back to the front door after the office visit.

“If you paid attention to the sequence of turns along the path, then you may have difficulty because you need to remember to reverse the sequence, and this becomes increasingly difficult as the number of turns increases. But instead, if you paid more attention to the objects that you passed, then you may navigate back to the front door by going from one familiar object to another without considering the sequence of turns. This strategy will work, as long as you can always see a familiar object. If you get lost and enter an unexplored part of the building, you will have difficulty finding your way back,” says Laura A. Carlson of the University of Notre Dame, first author of the article.

In some buildings, the strategies people use and the quality of their cognitive map may not matter very much. “If the building has an obvious structure, with long lines of sight, you won’t have to rely much on this internal representation of your path,” says Carlson.

Some buildings, on the other hand, make it difficult. Carlson and her coauthors, Christoph Hölscher of the University of Freiburg, Thomas F. Shipley of Temple University, and Ruth Conroy Dalton of University College, London, use the Seattle Central Library as an example. The bold building, designed by Dutch architect Rem Koolhaas, opened in 2004 and won awards for its design. But visitors complain that it’s difficult to navigate. People expect floors to have similar layouts, but the first five levels of the library are all different; even the outside walls don’t necessarily line up. Normally, lines of sight help people get around, but the library has long escalators that skip over levels, making it hard to see where they go.

For building users who may find navigating in new environments challenging, there are strategies that are helpful. “I used to worry when I explore a new city by myself that I would not find my way back to the hotel,” Carlson says. “However, this simple trick is effective. At each intersection where I need to turn, I spin around to see what the intersection will look like from my return perspective. That way, I will be able to recognize it from the other direction, and I can store that view also in my cognitive map.” This strategy also tends to work well for indoor navigation.

Architects, on the other hand, may be among the class of people with very strong spatial skills, because their craft requires numerous spatial transformations, such as needing to envision 3D space from 2D depictions. One unanticipated consequence of such abilities is that they may not be very good at taking the perspective of a user with poorer spatial skills, and therefore may not be able to fully anticipate where users may have navigational difficulties within their buildings.

Architects and cognitive scientists could learn from each other, Carlson says. Architects could explain how they use building features to encourage certain patterns of movement within the building, informing research on how people move through space; scientists could contribute data on how we build cognitive maps and what strategies different people use to find their way around.

Keri Chiodo | EurekAlert!
Further information:
http://www.psychologicalscience.org
http://www.psychologicalscience.org/index.php/news/releases/getting-lost-in-buildings-architecture-can-bias-your-cognitive-map.html

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>