Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Getting Lost in Buildings: Architecture Can Bias Your Cognitive Map

Some people always know which way is north and how to get out of a building. Others can live in an apartment for years without knowing which side faces the street.

Differences among people that include spatial skills, experience, and preferred strategies for wayfinding are part of what determines whether people get lost in buildings—and psychological scientists could help architects understand where and why people might get lost in their buildings, according to the authors of an article published in Current Directions in Psychological Science, a journal of the Association for Psychological Science.

When you enter a new building, you build a cognitive map—a representation in your mind of the objects and locations in that environment. Success in navigating in the building may depend upon what information you put into the cognitive map. “For example, imagine visiting a new doctor’s office. You walk in the front door and find your way to the office, storing information about your route and the objects you encounter in your cognitive map. What is most interesting is how this information is then used to direct you back to the front door after the office visit.

“If you paid attention to the sequence of turns along the path, then you may have difficulty because you need to remember to reverse the sequence, and this becomes increasingly difficult as the number of turns increases. But instead, if you paid more attention to the objects that you passed, then you may navigate back to the front door by going from one familiar object to another without considering the sequence of turns. This strategy will work, as long as you can always see a familiar object. If you get lost and enter an unexplored part of the building, you will have difficulty finding your way back,” says Laura A. Carlson of the University of Notre Dame, first author of the article.

In some buildings, the strategies people use and the quality of their cognitive map may not matter very much. “If the building has an obvious structure, with long lines of sight, you won’t have to rely much on this internal representation of your path,” says Carlson.

Some buildings, on the other hand, make it difficult. Carlson and her coauthors, Christoph Hölscher of the University of Freiburg, Thomas F. Shipley of Temple University, and Ruth Conroy Dalton of University College, London, use the Seattle Central Library as an example. The bold building, designed by Dutch architect Rem Koolhaas, opened in 2004 and won awards for its design. But visitors complain that it’s difficult to navigate. People expect floors to have similar layouts, but the first five levels of the library are all different; even the outside walls don’t necessarily line up. Normally, lines of sight help people get around, but the library has long escalators that skip over levels, making it hard to see where they go.

For building users who may find navigating in new environments challenging, there are strategies that are helpful. “I used to worry when I explore a new city by myself that I would not find my way back to the hotel,” Carlson says. “However, this simple trick is effective. At each intersection where I need to turn, I spin around to see what the intersection will look like from my return perspective. That way, I will be able to recognize it from the other direction, and I can store that view also in my cognitive map.” This strategy also tends to work well for indoor navigation.

Architects, on the other hand, may be among the class of people with very strong spatial skills, because their craft requires numerous spatial transformations, such as needing to envision 3D space from 2D depictions. One unanticipated consequence of such abilities is that they may not be very good at taking the perspective of a user with poorer spatial skills, and therefore may not be able to fully anticipate where users may have navigational difficulties within their buildings.

Architects and cognitive scientists could learn from each other, Carlson says. Architects could explain how they use building features to encourage certain patterns of movement within the building, informing research on how people move through space; scientists could contribute data on how we build cognitive maps and what strategies different people use to find their way around.

Keri Chiodo | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>