Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Long-term study reports deep brain stimulation effective for most common hereditary dystonia

20.06.2013
In what is believed to be the largest follow-up record of patients with the most common form of hereditary dystonia – a movement disorder that can cause crippling muscle contractions – experts in deep brain stimulation report good success rates and lasting benefits.

Michele Tagliati, MD, neurologist, director of the Movement Disorders Program at Cedars-Sinai Medical Center's Department of Neurology, and Ron L. Alterman, MD, chief of the Division of Neurosurgery at Beth Israel Deaconess Medical Center in Boston, published the study in the July issue of the journal Neurosurgery. The doctors worked together at two New York City hospitals for a decade, until Tagliati joined Cedars-Sinai in 2010.

The study is focused on early-onset generalized dystonia, which in 1997 was found to be caused by a mutation of the DYT1 gene. Less than 1 percent of the overall population carries this mutation, but the frequency is believed to be three to five times higher among people of Ashkenazi Jewish heritage. Thirty percent of people who carry the defect develop dystonia.

"Long-term follow-up of DYT1 patients who have undergone DBS treatment is scarce, with current medical literature including only about 50 patients followed for three or more years," Tagliati said. This study reviewed medical records of 47 consecutive patients treated with DBS for at least one year over a span of 10 years, 2001 to 2011.

"We found that, on average, symptom severity dropped to less than 20 percent of baseline within two years of device implantation. Sixty-one percent of patients were able to discontinue all their dystonia-related medications, and 91 percent were able to discontinue at least one class of drugs," Tagliati said. "Although a few earlier studies found that stimulation's effectiveness might wane after five years, our observations confirmed what other important DBS studies in dystonia are finding. Patients had statistically and clinically significant improvement that was maintained up to eight years."

Alterman, the article's senior author and the neurosurgeon who performed the implant surgeries, said the study also confirmed the procedure's safety. Complications, such as infection and device malfunction, were rare and manageable.

Patient follow-up ranged from one year to eight years after surgery; 41 patients were seen for at least two years, and four completed eight years. The youngest patient at time of surgery was 8 and the oldest was 71, with a median age of 16.

Dystonia's muscle contractions cause the affected area of the body to twist involuntarily, with symptoms that range from mild to crippling. If drugs – which often have undesirable side effects, especially at higher doses – fail to give relief, neurosurgeons and neurologists may work together to supplement medications with deep brain stimulation, aimed at modulating abnormal nerve signals. Electrical leads are implanted in the brain – one on each side – and an electrical pulse generator is placed near the collarbone. The device is programmed with a remote, hand-held controller. Tagliati is an expert in device programming, which fine-tunes stimulation for individual patients.

Tagliati has received speaker honoraria and consultation fees from pharmaceutical companies and DBS device manufacturers, but none related directly to this records review. Authors from Icahn School of Medicine at Mount Sinai, New York City; the New York Institute of Technology College of Osteopathic Medicine, Old Westbury, N.Y.; and Beth Israel Medical Center, New York City, contributed to the article.

Citation: Neurosurgery, "Deep Brain Stimulation in DYT1 Dystonia: a 10-year Experience," July 2013.

VIDEOLINK ENABLED - Thanks to a new, state-of-the-art in-house studio, Cedars-Sinai Medical Center can now instantly broadcast high-definition video directly to newsrooms around the world.

Sandy Van | EurekAlert!
Further information:
http://cedars-sinai.edu/

More articles from Health and Medicine:

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Better equipped in the fight against lung cancer
16.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>