Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Long-term study reports deep brain stimulation effective for most common hereditary dystonia

20.06.2013
In what is believed to be the largest follow-up record of patients with the most common form of hereditary dystonia – a movement disorder that can cause crippling muscle contractions – experts in deep brain stimulation report good success rates and lasting benefits.

Michele Tagliati, MD, neurologist, director of the Movement Disorders Program at Cedars-Sinai Medical Center's Department of Neurology, and Ron L. Alterman, MD, chief of the Division of Neurosurgery at Beth Israel Deaconess Medical Center in Boston, published the study in the July issue of the journal Neurosurgery. The doctors worked together at two New York City hospitals for a decade, until Tagliati joined Cedars-Sinai in 2010.

The study is focused on early-onset generalized dystonia, which in 1997 was found to be caused by a mutation of the DYT1 gene. Less than 1 percent of the overall population carries this mutation, but the frequency is believed to be three to five times higher among people of Ashkenazi Jewish heritage. Thirty percent of people who carry the defect develop dystonia.

"Long-term follow-up of DYT1 patients who have undergone DBS treatment is scarce, with current medical literature including only about 50 patients followed for three or more years," Tagliati said. This study reviewed medical records of 47 consecutive patients treated with DBS for at least one year over a span of 10 years, 2001 to 2011.

"We found that, on average, symptom severity dropped to less than 20 percent of baseline within two years of device implantation. Sixty-one percent of patients were able to discontinue all their dystonia-related medications, and 91 percent were able to discontinue at least one class of drugs," Tagliati said. "Although a few earlier studies found that stimulation's effectiveness might wane after five years, our observations confirmed what other important DBS studies in dystonia are finding. Patients had statistically and clinically significant improvement that was maintained up to eight years."

Alterman, the article's senior author and the neurosurgeon who performed the implant surgeries, said the study also confirmed the procedure's safety. Complications, such as infection and device malfunction, were rare and manageable.

Patient follow-up ranged from one year to eight years after surgery; 41 patients were seen for at least two years, and four completed eight years. The youngest patient at time of surgery was 8 and the oldest was 71, with a median age of 16.

Dystonia's muscle contractions cause the affected area of the body to twist involuntarily, with symptoms that range from mild to crippling. If drugs – which often have undesirable side effects, especially at higher doses – fail to give relief, neurosurgeons and neurologists may work together to supplement medications with deep brain stimulation, aimed at modulating abnormal nerve signals. Electrical leads are implanted in the brain – one on each side – and an electrical pulse generator is placed near the collarbone. The device is programmed with a remote, hand-held controller. Tagliati is an expert in device programming, which fine-tunes stimulation for individual patients.

Tagliati has received speaker honoraria and consultation fees from pharmaceutical companies and DBS device manufacturers, but none related directly to this records review. Authors from Icahn School of Medicine at Mount Sinai, New York City; the New York Institute of Technology College of Osteopathic Medicine, Old Westbury, N.Y.; and Beth Israel Medical Center, New York City, contributed to the article.

Citation: Neurosurgery, "Deep Brain Stimulation in DYT1 Dystonia: a 10-year Experience," July 2013.

VIDEOLINK ENABLED - Thanks to a new, state-of-the-art in-house studio, Cedars-Sinai Medical Center can now instantly broadcast high-definition video directly to newsrooms around the world.

Sandy Van | EurekAlert!
Further information:
http://cedars-sinai.edu/

More articles from Health and Medicine:

nachricht Electrical 'switch' in brain's capillary network monitors activity and controls blood flow
27.03.2017 | Larner College of Medicine at the University of Vermont

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>