Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Long commutes may be hazardous to health

08.05.2012
New findings reported in the American Journal of Preventive Medicine

As populations move even further away from urban centers, more people spend longer hours behind the wheel on their way to and from work. While sedentary behavior is known to have adverse effects on cardiovascular and metabolic health, the impact of long commutes by automobile are less understood. A new study has found that greater commuting distances are associated with decreased cardiorespiratory fitness (CRF), increased weight, and other indicators of metabolic risk. The results are published in the June issue of American Journal of Preventive Medicine.

"This study yields new information about biological outcomes and commuting distance, an understudied contributor to sedentary behavior that is prevalent among employed adults," explains lead investigator Christine M. Hoehner, PhD, MSPH, Washington University in St. Louis, Missouri. "It provides important evidence about potential mediators in the relationship between time spent driving and cardiovascular mortality."

Researchers studied 4,297 residents who lived and worked in eleven counties in the Dallas-Fort Worth or Austin, Texas metropolitan areas. Commuting distances were calculated with ArcGIS9 software and measured the shortest distance from home to work along the road network. CRF, body mass index (BMI), and metabolic risk variables including waist circumference, fasting triglycerides, fasting plasma glucose, high-density lipoprotein (HDL) cholesterol, and blood pressure, were measured. Self-reported participation in moderate to vigorous physical activity over the previous three months was also assessed.

The study found that people who drove longer distances to work reported less frequent participation in moderate to vigorous physical activity and decreased CRF, and had greater BMI, waist circumference, and blood pressure. The association remained when physical activity and CRF were adjusted for, although to a lesser degree for BMI and waist circumference. Those who commuted more than 15 miles to work were less likely to meet recommendations for moderate to vigorous physical activity, and had a higher likelihood of obesity. Commuting distances greater than 10 miles were associated with high blood pressure.

Dr. Hoehner explains that longer commutes may replace participation in physical activity, given the association between commute time and physical activity and CRF, and the lesser association with adiposity after adjustment for physical activity. "At the same time, both BMI and waist circumference were associated with commuting distance even after adjustment of physical activity and CRF, suggesting that a longer commuting distance may lead to a reduction in overall energy expenditure," she notes.

Association of commuting distance with the other metabolic risk indicators was largely weak or insignificant, with the exception of blood pressure. Multiple mechanisms could be contributing to this relationship. "The Dallas-Fort Worth region is ranked among the top five most congested metropolitan areas, and those with longer commutes may be more likely to be exposed to heavy traffic resulting in higher stress levels and more time sitting," says Dr. Hoehner.

Commuting by automobile represents only one of many forms of sedentary behavior, and this study did not examine other important contributors such as occupational sitting and TV viewing. Dr. Hoehner notes that future studies are needed to assess sedentary time across multiple behaviors to identify the independent effects of commuting on health.

Beverly Lytton | EurekAlert!
Further information:
http://www.ucsd.edu

Further reports about: BMI Medicine blood pressure metropolitan area physical activity preventive

More articles from Health and Medicine:

nachricht Vanishing capillaries
23.03.2017 | Technische Universität München

nachricht How prenatal maternal infections may affect genetic factors in Autism spectrum disorder
22.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>