Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Locking Parasites in Host Cell Could Be New Way to Fight Malaria

07.04.2009
Researchers at the University of Pennsylvania have discovered that parasites hijack host-cell proteins to ensure their survival and proliferation, suggesting new ways to control the diseases they cause. The study, appearing this week online in Science, was led by Doron Greenbaum, PhD, Assistant Professor of Pharmacology in the Penn School of Medicine.

“Researchers can now develop ways to kill parasites by placing roadblocks in the path they use to destroy their victims,” says Greenbaum. The team discovered that malaria parasites depend upon an enzyme stolen from the host cell for successful infection.

Historically, many researchers have focused on developing ways to keep parasites from entering host cells, but Greenbaum’s group was curious about an alternative route of attack: locking the parasites inside the host cell.

These studies began with Plasmodium falciparum, which causes the most deadly form of human malaria. Each year, the Centers for Disease Control and Prevention report 350–500 million cases of malaria occur worldwide, killing more than a million people. In collaboration with the laboratory of Penn biologist David Roos, PhD, the work was broadened to include Toxoplasma gondii, which causes a parasitic disease called toxoplasmosis, the leading cause of birth defects worldwide and harmful to people with compromised immune systems. The CDC estimates more than 60 million people living in the U.S. carry T. gondii.

“We always suspected that enzymes called proteases might be required to help parasites escape from the infected cell, but had assumed that these enzymes were produced by the parasites themselves. We had never considered that parasites might instead hijack host cell proteases. It's an ingenious system,” says Greenbaum. “Our findings open up whole new window for drug discovery.”

“This work is a triumph of integrative science, combining modern techniques in chemistry, biology, genetics, pharmacology, and genomics," says Roos, the E. Otis Kendal Professor of Biology and Ellison Medical Foundation Senior Scholar of Global Infectious Diseases. Collaborations between the Greenbaum and Roos laboratories have been facilitated by proximity, as these researchers are housed in adjacent space, under the auspices of the Penn Genome Frontiers Institute.

Because Plasmodium and Toxoplasma kill infected cells, they must constantly hop from cell to cell to survive. When parasites burst out of an infected cell, they leave a mess behind, shredding the dense meshwork of proteins comprising the host cell cytoskeleton and breaking the cell apart, causing cell death. But researchers were unsure what proteins the parasites were using as tools to help them break through the walls of the cell.

To observe the behavior of P. falciparum parasites, the team infected human red blood cells, using pharmacological and biochemical evidence to discover that parasites activate the host protease calpain-1. Blocking or removing calpain-1, a calcium regulated protease, left parasites trapped inside the host cell. By adding calpain-1 back into the cell, parasites were able to once again blast free.

Curious to know if the distantly related parasite T. gondii might use the same process, Greenbaum worked with Roos, who has pioneered the use of T. gondii for a wide range of molecular genetic and cellular studies. Infecting mouse fibroblasts with T. gondii, the team used genetic techniques to remove, and restore, calpain activity. They found that in the absence of calpain, parasites could not escape the infected cell, just as they had observed for malaria parasites.

Over the past 40 years, malaria has become increasingly resistant to drugs that once controlled this devastating disease, leading to an alarming increase in deaths. Targeting host proteins rather than the parasite itself might give the parasite less scope to develop resistance, since the parasite doesn't have genetic control over host proteins. Greenbaum plans to continue to explore the viability of calpain as a drug target for antiparasitic drugs.

This work was funded by the Ellison Medical Foundation, National Institute for Allergy and Infectious Diseases, the Ritter Foundation, and the Penn Genome Frontiers institute, and the Penn Institute for Translational Medicine and Therapeutics.

PENN Medicine is a $3.6 billion enterprise dedicated to the related missions of medical education, biomedical research, and excellence in patient care. PENN Medicine consists of the University of Pennsylvania School of Medicine (founded in 1765 as the nation's first medical school) and the University of Pennsylvania Health System.

Penn's School of Medicine is currently ranked #4 in the nation in U.S.News & World Report's survey of top research-oriented medical schools; and, according to most recent data from the National Institutes of Health, received over $379 million in NIH research funds in the 2006 fiscal year. Supporting 1,700 fulltime faculty and 700 students, the School of Medicine is recognized worldwide for its superior education and training of the next generation of physician-scientists and leaders of academic medicine.

The University of Pennsylvania Health System (UPHS) includes its flagship hospital, the Hospital of the University of Pennsylvania, rated one of the nation’s top ten “Honor Roll” hospitals by U.S.News & World Report; Pennsylvania Hospital, the nation's first hospital; and Penn Presbyterian Medical Center. In addition UPHS includes a primary-care provider network; a faculty practice plan; home care, hospice, and nursing home; three multispecialty satellite facilities; as well as the Penn Medicine at Rittenhouse campus, which offers comprehensive inpatient rehabilitation facilities and outpatient services in multiple specialties.

Karen Kreeger | EurekAlert!
Further information:
http://www.uphs.upenn.edu

More articles from Health and Medicine:

nachricht Hot cars can hit deadly temperatures in as little as one hour
24.05.2018 | Arizona State University

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>