Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Locking Parasites in Host Cell Could Be New Way to Fight Malaria

07.04.2009
Researchers at the University of Pennsylvania have discovered that parasites hijack host-cell proteins to ensure their survival and proliferation, suggesting new ways to control the diseases they cause. The study, appearing this week online in Science, was led by Doron Greenbaum, PhD, Assistant Professor of Pharmacology in the Penn School of Medicine.

“Researchers can now develop ways to kill parasites by placing roadblocks in the path they use to destroy their victims,” says Greenbaum. The team discovered that malaria parasites depend upon an enzyme stolen from the host cell for successful infection.

Historically, many researchers have focused on developing ways to keep parasites from entering host cells, but Greenbaum’s group was curious about an alternative route of attack: locking the parasites inside the host cell.

These studies began with Plasmodium falciparum, which causes the most deadly form of human malaria. Each year, the Centers for Disease Control and Prevention report 350–500 million cases of malaria occur worldwide, killing more than a million people. In collaboration with the laboratory of Penn biologist David Roos, PhD, the work was broadened to include Toxoplasma gondii, which causes a parasitic disease called toxoplasmosis, the leading cause of birth defects worldwide and harmful to people with compromised immune systems. The CDC estimates more than 60 million people living in the U.S. carry T. gondii.

“We always suspected that enzymes called proteases might be required to help parasites escape from the infected cell, but had assumed that these enzymes were produced by the parasites themselves. We had never considered that parasites might instead hijack host cell proteases. It's an ingenious system,” says Greenbaum. “Our findings open up whole new window for drug discovery.”

“This work is a triumph of integrative science, combining modern techniques in chemistry, biology, genetics, pharmacology, and genomics," says Roos, the E. Otis Kendal Professor of Biology and Ellison Medical Foundation Senior Scholar of Global Infectious Diseases. Collaborations between the Greenbaum and Roos laboratories have been facilitated by proximity, as these researchers are housed in adjacent space, under the auspices of the Penn Genome Frontiers Institute.

Because Plasmodium and Toxoplasma kill infected cells, they must constantly hop from cell to cell to survive. When parasites burst out of an infected cell, they leave a mess behind, shredding the dense meshwork of proteins comprising the host cell cytoskeleton and breaking the cell apart, causing cell death. But researchers were unsure what proteins the parasites were using as tools to help them break through the walls of the cell.

To observe the behavior of P. falciparum parasites, the team infected human red blood cells, using pharmacological and biochemical evidence to discover that parasites activate the host protease calpain-1. Blocking or removing calpain-1, a calcium regulated protease, left parasites trapped inside the host cell. By adding calpain-1 back into the cell, parasites were able to once again blast free.

Curious to know if the distantly related parasite T. gondii might use the same process, Greenbaum worked with Roos, who has pioneered the use of T. gondii for a wide range of molecular genetic and cellular studies. Infecting mouse fibroblasts with T. gondii, the team used genetic techniques to remove, and restore, calpain activity. They found that in the absence of calpain, parasites could not escape the infected cell, just as they had observed for malaria parasites.

Over the past 40 years, malaria has become increasingly resistant to drugs that once controlled this devastating disease, leading to an alarming increase in deaths. Targeting host proteins rather than the parasite itself might give the parasite less scope to develop resistance, since the parasite doesn't have genetic control over host proteins. Greenbaum plans to continue to explore the viability of calpain as a drug target for antiparasitic drugs.

This work was funded by the Ellison Medical Foundation, National Institute for Allergy and Infectious Diseases, the Ritter Foundation, and the Penn Genome Frontiers institute, and the Penn Institute for Translational Medicine and Therapeutics.

PENN Medicine is a $3.6 billion enterprise dedicated to the related missions of medical education, biomedical research, and excellence in patient care. PENN Medicine consists of the University of Pennsylvania School of Medicine (founded in 1765 as the nation's first medical school) and the University of Pennsylvania Health System.

Penn's School of Medicine is currently ranked #4 in the nation in U.S.News & World Report's survey of top research-oriented medical schools; and, according to most recent data from the National Institutes of Health, received over $379 million in NIH research funds in the 2006 fiscal year. Supporting 1,700 fulltime faculty and 700 students, the School of Medicine is recognized worldwide for its superior education and training of the next generation of physician-scientists and leaders of academic medicine.

The University of Pennsylvania Health System (UPHS) includes its flagship hospital, the Hospital of the University of Pennsylvania, rated one of the nation’s top ten “Honor Roll” hospitals by U.S.News & World Report; Pennsylvania Hospital, the nation's first hospital; and Penn Presbyterian Medical Center. In addition UPHS includes a primary-care provider network; a faculty practice plan; home care, hospice, and nursing home; three multispecialty satellite facilities; as well as the Penn Medicine at Rittenhouse campus, which offers comprehensive inpatient rehabilitation facilities and outpatient services in multiple specialties.

Karen Kreeger | EurekAlert!
Further information:
http://www.uphs.upenn.edu

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>