Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

LipidomicNet: New EU project in the field of lipidomics promotes translational research towards human disease

21.08.2008
The enormous advances in biology and biomedical research during the last decade originate mainly from the fields of Genomics and Proteomics. The current revolution in lipid analysis, however, promises change.

For the first time the methodological possibilities are available to map the entire spectrum of lipids in cells, tissues and whole organisms. Europe has so far played a pioneering and leading role in the biochemistry and analysis of lipids and most of the leading mass spectrometry providers are European companies.

These mass spectrometry based nano-scale and high throughput technologies combined with molecular imaging and modern information technology will certainly revolutionize our understanding of the complex interaction networks in a functioning cell and how lipids together with genes and proteins determine cellular functions in health and disease.

Lipids are central to the regulation and control of cellular processes by acting as basic building units for biomembranes, the platforms for the vast majority of cellular functions. Recent developments in lipid mass spectrometry have set the scene for a completely new way to understand the composition of membranes, cells and tissues in space and time by allowing the precise identification and quantification of alterations of the total lipid profile after specific perturbations.

In combination with advanced proteome and transcriptome analysis tools and novel imaging techniques using RNA interference, it is now possible to unravel the complex network between lipids, genes and proteins in an integrated lipidomics approach.

LipidomicNet addresses lipid droplets (LD) as dynamic organelles with regard to composition, metabolism and regulation. Lipid storage in multiple cells and tissues leads to transdifferentiation of multiple organs creating, fatty liver, obesity, white muscle and macrophage foam cells which are the hallmark of all energy overload diseases. LD also play a crucial role in HCV infection, a leading cause of liver disease that will continue to be a major health burden for the foreseeable future. This is why this organelle is in the focus of our project.

The project exploits recent advances in lipidomics technology to establish high-throughput methods to define drugable targets and novel biomarkers related to LD lipid and protein species, their interaction and regulation during assembly, disassembly and storage. The research groups study lipid protein interactions and investigate the dynamics of fat deposition and release in relevant cells as a hallmark of energy overload diseases with major health care impact in Europe.

Translational research from mouse to man applied to LD pathology is a cornerstone of this project at the interface between research and development. To maximize the value of the assembled data generated throughout the project, “LipidomicNet” as a detailed special purpose Wiki format data base will be developed and integrated into the existing Lipidomics Expertise Platform (LEP) established through the SSA ELife project (www.lipidomics-expertise.de). ELife collaborates with the NIH initiative LIPID MAPS (www.lipidmaps.org) and the Japanese pendant Lipidbank (www.lipidbank.jp) and is connected to the Danubian Biobank consortium (SSA DanuBiobank, www.danubianbiobank.de) for clinical lipidomics.

LipidomicNet builds on a private public partnership (PPP) in order to support the translation of LipidomicNet inventions into new technologies and products that will benefit the health care systems. The 5 SMEs BIOBASE (www.biobase.de), ISB (www.systemsbiology.ru), ZORA Biosciences (www.zora.fi), Integromics (www.integromics.com) and Protagen (www.protagen.de) have been selected as PPP-partners between academia and industry because of their core competence necessary for LipidomicNet.

The EU-funded consortium of 21 European research groups and the 5 SMEs have recognized the utmost importance of promoting Lipidomic research, to attract the best young investigators to this newly forming research area to safeguard Europe’s vital interests in this important area and to ensure successful competition with the USA and Asia. Funding LipidomicNet in the field of Lipidomics will unequivocally be of benefit for areas such as health, nutrition and disease management.

Juergen Jonas | alfa
Further information:
http://www.lipidomics-expertise.de

More articles from Health and Medicine:

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

nachricht Prospect for more effective treatment of nerve pain
20.02.2017 | Universität Zürich

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

NASA's fermi finds possible dark matter ties in andromeda galaxy

22.02.2017 | Physics and Astronomy

Wintering ducks connect isolated wetlands by dispersing plant seeds

22.02.2017 | Life Sciences

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>