Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


LipidomicNet: New EU project in the field of lipidomics promotes translational research towards human disease

The enormous advances in biology and biomedical research during the last decade originate mainly from the fields of Genomics and Proteomics. The current revolution in lipid analysis, however, promises change.

For the first time the methodological possibilities are available to map the entire spectrum of lipids in cells, tissues and whole organisms. Europe has so far played a pioneering and leading role in the biochemistry and analysis of lipids and most of the leading mass spectrometry providers are European companies.

These mass spectrometry based nano-scale and high throughput technologies combined with molecular imaging and modern information technology will certainly revolutionize our understanding of the complex interaction networks in a functioning cell and how lipids together with genes and proteins determine cellular functions in health and disease.

Lipids are central to the regulation and control of cellular processes by acting as basic building units for biomembranes, the platforms for the vast majority of cellular functions. Recent developments in lipid mass spectrometry have set the scene for a completely new way to understand the composition of membranes, cells and tissues in space and time by allowing the precise identification and quantification of alterations of the total lipid profile after specific perturbations.

In combination with advanced proteome and transcriptome analysis tools and novel imaging techniques using RNA interference, it is now possible to unravel the complex network between lipids, genes and proteins in an integrated lipidomics approach.

LipidomicNet addresses lipid droplets (LD) as dynamic organelles with regard to composition, metabolism and regulation. Lipid storage in multiple cells and tissues leads to transdifferentiation of multiple organs creating, fatty liver, obesity, white muscle and macrophage foam cells which are the hallmark of all energy overload diseases. LD also play a crucial role in HCV infection, a leading cause of liver disease that will continue to be a major health burden for the foreseeable future. This is why this organelle is in the focus of our project.

The project exploits recent advances in lipidomics technology to establish high-throughput methods to define drugable targets and novel biomarkers related to LD lipid and protein species, their interaction and regulation during assembly, disassembly and storage. The research groups study lipid protein interactions and investigate the dynamics of fat deposition and release in relevant cells as a hallmark of energy overload diseases with major health care impact in Europe.

Translational research from mouse to man applied to LD pathology is a cornerstone of this project at the interface between research and development. To maximize the value of the assembled data generated throughout the project, “LipidomicNet” as a detailed special purpose Wiki format data base will be developed and integrated into the existing Lipidomics Expertise Platform (LEP) established through the SSA ELife project ( ELife collaborates with the NIH initiative LIPID MAPS ( and the Japanese pendant Lipidbank ( and is connected to the Danubian Biobank consortium (SSA DanuBiobank, for clinical lipidomics.

LipidomicNet builds on a private public partnership (PPP) in order to support the translation of LipidomicNet inventions into new technologies and products that will benefit the health care systems. The 5 SMEs BIOBASE (, ISB (, ZORA Biosciences (, Integromics ( and Protagen ( have been selected as PPP-partners between academia and industry because of their core competence necessary for LipidomicNet.

The EU-funded consortium of 21 European research groups and the 5 SMEs have recognized the utmost importance of promoting Lipidomic research, to attract the best young investigators to this newly forming research area to safeguard Europe’s vital interests in this important area and to ensure successful competition with the USA and Asia. Funding LipidomicNet in the field of Lipidomics will unequivocally be of benefit for areas such as health, nutrition and disease management.

Juergen Jonas | alfa
Further information:

More articles from Health and Medicine:

nachricht Inflammation Triggers Unsustainable Immune Response to Chronic Viral Infection
24.10.2016 | Universität Basel

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>