Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lipid Blocks Influenza Infection

10.11.2011
A natural lipid in the fluid lining the lungs inhibits influenza infections in both cell cultures and mouse models, according to researchers at National Jewish Health. These findings, combined with previous studies demonstrating effectiveness against respiratory syncytial virus, suggest that the molecule, known as POPG, may have broad antiviral activity.

“Supplemental POPG could be an important, inexpensive and novel approach for the prevention and treatment of influenza and other respiratory virus infections,” said Dennis Voelker, PhD, Professor of Medicine, and senior author in the report, published online in the American journal of Respiratory Cell and Molecular Biology.

Influenza infects millions of people across the globe, killing 500,000 each year. Vaccines are highly effective, but must be reformulated each year to counter new viral strains. Two classes of drug are currently available to treat established influenza infections, although widespread resistance has developed against one class and is developing against the other.

Several proteins that inhibit viral activity have been identified in the fluid lining the lungs. Until recently, however, the antiviral role of POPG (palmitoyl-oleoyl-phosphatidylglycerol) has been unknown. Previous research by Dr. Voelker, Mari Numata, MD, PhD, and their colleagues demonstrated that POPG reduces inflammation in the lung and prevents infection by respiratory syncytial virus.

In the most recent study, the researchers looked at the ability of POPG to inhibit infection by two strains of influenza, H1N1-PR8 and H3N2. They found that POPG suppressed inflammatory responses, viral propagation and cell death normally associated with influenza infection.

In mice, POPG also suppressed viral infection and replication, and markedly reduced the inflammatory response to the virus. There were no observable deleterious effects of POPG in animal behavior or histopathology.

“Lipids such as POPG, offer potential advantages over antiviral proteins, because they are less likely to elicit unwanted immune responses, are more chemically stable and less expensive to manufacture than proteins,” said Dr. Numata, an instructor at National Jewish Health, and lead author on both the RSV and influenza papers. “Because POPG is effective against at least two different viruses, it also seems likely that a single mutation, which can make influenza vaccines and current drugs ineffective, is unlikely to have the same effect on POPG’s action.”

The researchers showed that POPG works by binding strongly to viral particles, which prevents attachment and infection of cells. This means that POPG works best if given before an infection occurs.

It has potential, however, to work after an infection has begun by inhibiting spread of the virus to uninfected cells. The success of POPG treatment after a virus infection has been established depends on keeping the lipid levels high for an extended period. At present it is difficult to maintain high levels of POPG in mice because of their rapid metabolisms and rapid respiratory rate.

“We believe POPG may prove effective both before and after an infection has occurred,” said Dr. Voelker. “Our initial results suggest that it may be possible to maintain therapeutic levels in the body with a reasonable dosing scheme, and we are investigating that now.”

William Allstetter | EurekAlert!
Further information:
http://www.njhealth.org

More articles from Health and Medicine:

nachricht NTU scientists build new ultrasound device using 3-D printing technology
07.12.2016 | Nanyang Technological University

nachricht How to turn white fat brown
07.12.2016 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>