Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Link between gene variant and relationship difficulties

02.09.2008
Scientists at Karolinska Institutet have found a link between a specific gene and the way men bond to their partners. The results, which are presented in the scientific journal PNAS, can lead to a better understanding of such problems as autism and social phobia.

"There are of course many reasons why a person might have relationship problems, but this is the first time that a specific gene, variant has been associated with how men bond to their partners", says Hasse Walum, postgraduate student at the Department of Medical Epidemiology and Biostatistics.

He stresses, however, that the effect of this genetic variation is relatively modest, and it cannot be used to predict with any real accuracy how someone will behave in a future relationship.

Hasse Walum and his colleagues made use of data from 'The Twin and Offspring Study in Sweden', which includes over 550 twins and their partners or spouses. The gene under study codes for one of the receptors for vasopressin, a hormone found in the brains of most mammals. The team found that men who carry one or two copies of a variant of this gene - allele 334 - often behave differently in relationships than men who lack this gene variant.

The incidence of allele 334 was statistically linked to how strong a bond a man felt he had with his partner. Men who had two copies of allele 334 were also twice as likely to have had a marital or relational crisis in the past year than those who lacked the gene variant. There was also a correlation between the men's gene variant and what their respective partners thought about their relationship.

"Women married to men who carry one or two copies of allele 334 were, on average, less satisfied with their relationship than women married to men who didn't carry this allele," says Mr Hasse Walum.

The same gene has been previously studied in voles, where it has been linked to monogamous behaviour in males.

"The fact that the corresponding gene has proved important for similar behaviour in voles makes our findings even more interesting, and suggests that the thoroughly studied brain mechanisms that we know give rise to strong bonds between individual voles can also be relevant to humans," he Hasse Walum continuesconcludes.

The team hopes that greater knowledge of the effect of vasopressin on human relations will one day give science a better understanding of the causes of diseases characterised by problems with social interaction, such as autism.

Publication: 'Genetic variation in the vasopressin receptor 1a gene (AVPR1A) associates with pair-bonding behavior in humans', Hasse Walum, Lars Westberg, Susanne Henningsson, Jenae M. Neiderhiser, David Reiss, Wilmar Igl, Jody M. Ganiban, Erica L. Spotts, Nancy L. Pedersen, Elias Eriksson and Paul Lichtenstein, PNAS Early Edition, 2-5 September 2008.

For further information, please contact:

Postgraduate Hasse Walum
Tel: +46 (0)8-524 822 96 or +46 (0)70-421 88 32
Email: hasse.walum@ki.se
Professor Paul Lichtenstein
Tel: +46 (0)8-524 874 24 or +46 (0)73-3093324
Email: paul.lichtenstein@ki.se
Karolinska Institutet is one of the leading medical universities in Europe. Through research, education and information, Karolinska Institutet contributes to improving human health. Each year, the Nobel Assembly at Karolinska Institutet awards the Nobel Prize in Physiology or Medicine.

Katarina Sternudd | idw
Further information:
http://ki.se

Further reports about: AVPR1a Karolinska PNAS allele 334 social phobia specific gene vasopressin receptor

More articles from Health and Medicine:

nachricht 'Exciting' discovery on path to develop new type of vaccine to treat global viruses
18.09.2017 | University of Southampton

nachricht A new approach to high insulin levels
18.09.2017 | Schweizerischer Nationalfonds SNF

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

New quantum phenomena in graphene superlattices

19.09.2017 | Physics and Astronomy

A simple additive to improve film quality

19.09.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>